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Science and Innovation

“Whether it's improving our 
health or harnessing clean 
energy, protecting our security 
or succeeding in the global 
economy, our future depends 
on reaffirming America's role 
as the world's engine of 
scientific discovery and 
technological innovation.”

 ― President Barack Obama
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… Behind the Scenes

“The public has generally 
treated this progress as 
something that just happened, 
without recognizing that it is, in 
fact, largely the result of a 
sustained federal commitment 
to support science through 
science policies.”

 ― http://science-policy.net
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Science and Innovation Policy

● Goal: identify administrative, financial, political actions

● Actions chosen to have impact on, e.g.,

– Stimulating breakthrough research

– Increasing economic prosperity

– Broadening participation

● Government, private sector, education

● This talk: statistical models for facilitating efficient, 
data-driven science policy decisions
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Examples of Policy Actions

● Funding actions:

– Using federal funds for research on human stem cells

– “People not projects” vs. pre-defined deliverables

● Patenting actions:

– Granting software patents

● Educational actions:

– Running high school outreach activities

– Providing mentoring programs
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Data-Driven Policy Decisions

● Discovery: identifying 
possible policy actions

● Prediction: estimating 
expected impact

● Evaluation: assessing 
observed outcomes

⇒ Automated data analysis
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Data: Products of Collaboration

“Scientific information is both 
the basic raw material for, and 
one of the principal products 
of, scientific research […] 
Scientists find out what other 
scientists are accomplishing 
through [...] journals, books, 
abstracts and indexes, 
bibliographies, reviews.”

 ― NSF Brochure, 1962
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Approach: Statistical Models

● Modeling challenges:

– Aggregating and representing large data sets

– Handling data from sources with disparate emphases

– Reasoning under uncertain information

– Performing efficient inference

● Bayesian latent (hidden) variable models:

– Powerful and flexible [Wallach et al. & Adams et al., AISTATS '10]

– This talk: statistical topic models
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My Research Goal

To develop new statistical models and computational tools 
for representing and analyzing large quantities of complex 
data in order to better enable scientific policy-makers to 
identify and evaluate high-impact policy actions and 
advance the study of science and innovation policy.

+ →
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Collaborate to Study Collaboration

“There needs to be a greater 
focus on what these [science 
interaction] data mean [...] 
This requires the input of social 
scientists, rather than just 
those more traditionally 
involved in data capture, such 
as computer scientists.”

 ― Julia Lane, NSF, 24 March 2010
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This Talk

● Background: statistical topic models

● Building “off-the-shelf” statistical topic models

● Evaluating statistical topic models
 

Collaborators: Sarah Kaplan, Rotman, University of Toronto; Andrew 
McCallum, UMass Amherst; David Mimno, UMass Amherst; Ned Talley, NIH
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Why Topic Models?

gaussian
regression
covariance
prediction
function
bayesian
process
prior
distribution
matrix

kriging
covariance
mean
estimate
weight
random
mse
matrix
conditional
point

vs.
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Documents and Topics
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Topics and Words

human evolution disease computer

genome evolutionary host models

dna species bacteria information

genetic organisms diseases data

genes life resistance computers

sequence origin bacterial system

gene biology new network

molecular groups strains systems

sequencing phylogenetic control model

map living infectious parallel

... ... ... ...

p
ro

b
a
b
ili

ty
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Generative Statistical Modeling

● Assume data was generated by a probabilistic model:

– Model may have hidden structure (latent variables)

– Model defines a joint distribution over all variables

– Model parameters are unknown

● Infer hidden structure and model parameters from data

● Situate new data into estimated model
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Generative Process

probability

..
.



Hanna M. Wallach   ::    UMass Amherst   ::    18

Choose a Distribution Over Topics

probability

..
.
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Choose a Topic

probability

..
.
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Choose a Word

probability

..
.
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… And So On

probability

..
.
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Real Data: Statistical Inference

probability

..
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Directed Graphical Models

● Nodes: random variables (latent or observed)

● Edges: probabilistic dependencies between variables

● Plates: “macros” that allow subgraphs to be replicated
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Statistical Topic Modeling

topics

observed
word

document-specific
topic distribution

topic
assignment

[Hofmann, '99]
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Latent Dirichlet Allocation (LDA)

Dirichlet
distribution

topics

observed
word

document-specific
topic distribution

topic
assignment

Dirichlet
distribution

[Blei, Ng & Jordan, '03]
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The State of The Art

● Topic models are extremely popular

● … but they're not always usable by non-experts

● Need to bridge this gap between producers and 
consumers of topic modeling technology:

– Address problems/challenges faced by practitioners

– Question unquestioned assumptions

– Explore the interplay between theory and practice
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“Off-the-Shelf” Topic Modeling

I want to model technology 
emergence by analyzing 
patent abstracts...

I have a statistical model
that you can use...
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“Off-the-Shelf” Topic Modeling

I want to model technology 
emergence by analyzing 
patent abstracts...

I have a statistical model
that you can use...

a a the the

field the of invention

emission carbon a of

an and to to

electron gas and present

... ... ... ...
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“Off-the-Shelf” Topic Modeling?

Help! All my topics consist
of “the, and of, to, a ...”

Preprocess your data to
remove stop words...

Now they all consist of 
“invention, present, thereof ...”

Make a domain-specific
 list of stop words...

Wait, but how do I choose the
right number of topics?

Evaluate the probability of unseen
data for different numbers...
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Discrete Probability Distributions

● 3-dimensional discrete probability distributions can be 
visually represented in 2-dimensional space:

A

B C
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Dirichlet Distribution

● Distribution over discrete probability distributions:

base measure (mean) 

concentration
parameter

A

B C

...

≡
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Dirichlet Parameters
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Dirichlet Priors for LDA

symmetric priors:
uniform base measures
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Dirichlet Priors for LDA

● Two scalar concentration parameters: α and β

● Concentration parameters are usually set heuristically

– e.g.,            and 

● Some recent work on learning optimal values for the 
concentration parameters from data

● No rigorous study of the Dirichlet priors:

– e.g., asymmetric vs. symmetric base measures

– Effects of the base measures on the inferred topics
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Symmetric → Asymmetric

● Use prior over                             as a running example

● Uniform base measure → nonuniform base measure

● Asymmetric prior: some topics more likely a priori
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Hierarchical Asymmetric Dirichlet

● Which topics should be more probable a priori?

– Draw     from a Dirichlet distribution:

A

B C

...

A

B C
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A

B C

...

A Theoretical Observation...

● Symmetric Dirichlet is a special case of the hierarchical 
asymmetric Dirichlet (large concentration parameter)

...

A

B C
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Putting Everything Together

● Asymmetric hierarchical Dirichlet priors

● Integrate out    ,    and base measures

● Learn    and concentration parameters from data
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Data Sets

● Carbon nanotechnology patents:

– Ultimate goal: track innovation and emergence

– Fullerene and carbon nanotube patents

– 1,016 abstracts (~100 words each)

– 103,499 total words; 6,068 unique words

● 20 Newsgroups data (80,012 total words)

● New York Times articles (477,465 total words)
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Inferred Topics

the carbon metal composite

a nanotubes catalytic polymer

of nanotube transition matrix

to catalyst catalyst weight

and substrate from fiber

... ... ... ...

a a the the

field the of invention

emission carbon a of

an and to to

electron gas and present

... ... ... ...

before

after
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Sampled Concentration Parameters
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Sampled Concentration Parameters
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Intuition

● Topics should be distinct from each other:

– Asymmetric prior over topics makes topics more similar to 
each other (and to corpus-wide word frequencies)

– Want a symmetric prior to preserve topic “distinctness”

● Still have to account for power-law word usage:

– Asymmetric prior over document-specific topic 
distributions means some topics (e.g., “the, a, of, to ...”) 
can be used more often than others in all documents 
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“Off-the-Shelf” Topic Modeling

I can model technology 
emergence by analyzing 
patent abstracts!

the carbon metal composite

a nanotubes catalytic polymer

of nanotube transition matrix

to catalyst catalyst weight

and substrate from fiber

... ... ... ...

Great! Let me know if you 
need any more help!
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Declining Topics
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Rising Topics
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Analyzing Debian Mailing Lists
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Building Other Tools

● Topic-based language modeling [Wallach, ICML '06]

– Predict the next word given previous words

– Have to model stop words

● Polylingual topic modeling [Mimno et al., EMNLP '09]

– Track scientific progress in other countries 

– Simultaneously model text in many languages

– Need robustness to word usage in many languages
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Evaluating Topic Models

● Topic models are unsupervised so evaluation is hard

● A lot of topic modeling research has skirted this issue

● Easy to get a sense of topics from “eyeballing” output

– … but this isn't rigorous evaluation

● One common evaluation metric is the probability of 
held-out documents [Wallach et al., ICML '09]

● Also need expert-driven evaluation
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Expert-Driven Evaluation

● Scientific policy-makers know their own domains

● Invaluable resource for model evaluation:

– Identification of good/poor quality topics

– Characterization of different types of topics

● Collaborative research:

– Automated evaluation metrics

– Prior distributions that influence model output
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Evaluation of NIH Topics

● 2 experts from NIH, 150 topics (NINDS coverage)

● Collaboratively developed 3-stage evaluation protocol

● 4 classes of poor quality topics:

– Intruded: 2 or more unrelated concepts

– Chained: e.g., “fatty acids” → “acids” → “nucleic acids”

– Unbalanced: mix of general and specific terms

– Random: no clear concept represented
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Evaluation Metrics

● Number of words assigned to each topic (topic size)

● Within-document co-occurrence of the top words

Intruded Chained

sleep cerebellar

sars cerebellum

insomnia pb

cov purkinje

disturbances ag

... ...



Hanna M. Wallach   ::    UMass Amherst   ::    55

Automated Evaluation

● Word co-occurrence-based metric:

– 17 of 20 worst-scoring topics are “bad”

– 18 of 20 best-scoring topics are “good”

● Goal: incorporate co-occurrence information directly 
into the model to prevent poor quality topics:

– Words that do not co-occur in documents should not have 
high probability within the a single topic
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Generalized Polya Urns

● The topic–word component of LDA is a Polya urn

● Can be replaced with a generalized Polya urn

– Can then incorporate co-occurrence statistics directly into 
the model via the generalized Polya urn schema

● Relatively little computational cost beyond LDA

● Resultant topics are more coherent:

– Much better evaluation scores (automated, humans)



Thanks!
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