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Nonparametric Bayesian Clustering

e Many uses: topic modeling, DNA motif clustering, etc.

e Underlying assumptions:

- Set of RVs drawn from some unknown distribution
- Unknown distribution is drawn from some prior

e Examples of nonparametric Bayesian priors:

- Dirichlet process (DP): ubiquitous
- Pitman-Yor process (PYP): generalization of the DP
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Prior Assumptions

e DP & PYP both exhibit the “rich-get-richer” property
e Rich-get-richer implications:

- Small # of large clusters

- Large # of small clusters

e Rich-get-richer isn't always appropriate
e \WWant greater diversity of priors for clustering:

- More choices for practitioners
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The Uniform Process (UP)

e Introduced as an ad hoc prior for DNA motif clustering
- Does not exhibit the rich-get-richer property
e We compare the UP to the DP & PYP in terms of:

1. Asymptotic characteristics

2. Characteristics for typical sample sizes

3. Modeling trade-offs (e.g., exchangeability)
4. Real-world clustering performance
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Mixture Models for Clustering

e Mixture models:

- Assume each Xy was generated by one of K mixture
components characterized by parameters ¢ = {¢/<}l,§=1

e Clustering:
- Goal: partition X =(X1,...,Xn) into clusters

- Equivalent to identifying the set of parameters ¢n = ¢k
responsible for generating each observation Xy

- Observations associated with ¢, form cluster k
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Bayesian Mixture Models

e Bayesian mixture modeling:

- Assume parameters & come from a prior P(®)

e Nonparametric Bayesian mixture modeling

- P(Yn=0k|¢1,...,¥n-1) is well-defined as K — oo
- Model learns the “right” # of mixture components
- Avoids costly model comparisons
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Dirichlet Process

[Aldous, '85; Sethuraman, '94; Ishwaran & James, '01; etc.]

e 2 parameters:

- Concentration parameter 6
- Base distribution Go

o P(Uns1|Y1,..., YN, 0,Go) =
{%fe Yny1 =Pk € {P1,..., Pk}

v+ Yn+1~Go
where Ni=Y"_ I(¢n=0x)
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Pitman-Yor Process

e 3 parameters:

- Concentration parameter 6
- Discount parameter a
- Base distribution Go

o P(Uns1|W¢1,....Un, 6, a,Go) =
{I\ll\ﬁ:ea Uny1 = Pk € {P1,..., Pk}

0+Ka
vra  Yn+1~ Go
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Uniform Process

[Qin et al., '03]

e 2 parameters:

- Concentration parameter 6
- Base distribution Go

o P(Uns1|¥1,...,¥nN,0,Go) =
{ﬁt@ Uny1 =Pk € {P1,..., Pk}

7z Yn+1~Go

e No “rich-get-richer” property
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DP Asymptotics (N - «)

[Arratia et al., '03]

e Expected number of unique clusters in a partition:

N
E(Ky|DP)=3 . —2— ~ @logN

e Expected number of clusters of size M:

liMp—co E(Hm,n | DP) = &

= Small # large clusters, large # small clusters
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PYP Asymptotics (N - «)

[Pitman, '02]

e Expected number of unique clusters in a partition:

'(1+6
E(Kn | PY) & oy NO

e Expected number of clusters of size M:

r(1+6) ]_[ﬁ;ll(m—or)
M(a+0)M!

E(Hm n|PY) = N

= Small # large clusters, large # small clusters
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UP Asymptotics (N - x)

e Expected number of unigue clusters in a partition:
E(Ky|UP) ~ v26 - N2
e Expected number of clusters of size M:
E(HuwNn|UP)= 6

= Uniform distribution of cluster sizes
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Simulation: Number of Clusters
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Simulation: Cluster Sizes
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Exchangeability

e Modeling tradeoffs: exchangeability vs. rich-get-richer
e The UP is not exchangeable over cluster assignments:

- P(cluster assignments) is not invariant to permutations
e Previous work has not addressed this:

- We present a new Gibbs sampling algorithm that is
correct for a fixed ordering of cluster assignments

- We demonstrate that P(cluster assignments) is highly
robust to permutations of the cluster assignments
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Gibbs Sampler

e Let Ch be the cluster assignment for Xp:
- cp =k implies ¥n = ¢k
e Given an ordering of observations:

P(ch|ec\n, X, 6, ordering 1,...,N)

P(Xn | Cn; X\n, C\n)P(Cn | C]_, P aay Cn—ll 9)

[T PlcmlcL, ..., cm-1,0)
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Robustness to Orderings
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Document Clustering

e No reason to expect rich-get-richer cluster usage

e Clustering model (generative process):

L ca=kel, ... K

CdlC<d ~ {d_%w o
d—1+6 Cd = Knew

ng ~ Gg

¢y ~ Dir(¢y[nc,, B)
wyg ~ Mult(¢y)
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Experiments

e 1200 carbon nanotechnology patent abstracts:
- 1000 training abstracts, 200 test abstracts
- Single, fixed ordering

e Compare predictive performance with DP and UP priors:

- 5 Gibbs sampling runs
- 8 concentration parameter values
- Compute (approximate) probability of test documents
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Results
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Summary

e DP & PYP both lead to a “rich-get-richer” property
- Not always appropriate/desirable

e \We compared the UP to the DP & PYP in terms of:
1. Asymptotic characteristics
2. Characteristics for typical sample sizes
3. Modeling trade-offs (e.g., exchangeability)

4. Real-world clustering performance
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