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Nonparametric Bayesian Clustering

● Many uses: topic modeling, DNA motif clustering, etc.

● Underlying assumptions:

– Set of RVs drawn from some unknown distribution

– Unknown distribution is drawn from some prior

● Examples of nonparametric Bayesian priors:

– Dirichlet process (DP): ubiquitous

– Pitman-Yor process (PYP): generalization of the DP
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Prior Assumptions

● DP & PYP both exhibit the “rich-get-richer” property

● Rich-get-richer implications:

– Small # of large clusters

– Large # of small clusters

● Rich-get-richer isn't always appropriate

● Want greater diversity of priors for clustering:

– More choices for practitioners
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The Uniform Process (UP)

● Introduced as an ad hoc prior for DNA motif clustering

– Does not exhibit the rich-get-richer property

● We compare the UP to the DP & PYP in terms of:

1. Asymptotic characteristics

2. Characteristics for typical sample sizes

3. Modeling trade-offs (e.g., exchangeability)

4. Real-world clustering performance
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Mixture Models for Clustering

● Mixture models:

– Assume each      was generated by one of    mixture 
components characterized by parameters

● Clustering:

– Goal: partition                            into clusters

– Equivalent to identifying the set of parameters              
responsible for generating each observation

– Observations associated with      form cluster
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Bayesian Mixture Models

● Bayesian mixture modeling:

– Assume parameters    come from a prior

● Nonparametric Bayesian mixture modeling

–                                         is well-defined as

– Model learns the “right” # of mixture components

– Avoids costly model comparisons
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Dirichlet Process

● 2 parameters:

– Concentration parameter

– Base distribution

●  

where

[Aldous, '85; Sethuraman, '94; Ishwaran & James, '01; etc.]



An Alternative Prior Process for Bayesian Clustering    ::    8

Pitman-Yor Process

● 3 parameters:

– Concentration parameter

– Discount parameter 

– Base distribution

●

[Pitman & Yor, '97]
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Uniform Process

● 2 parameters:

– Concentration parameter

– Base distribution

●  

 

● No “rich-get-richer” property

[Qin et al., '03]
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DP Asymptotics (N → ∞)

● Expected number of unique clusters in a partition:

● Expected number of clusters of size    :

⇒ Small # large clusters, large # small clusters

[Arratia et al., '03]
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PYP Asymptotics (N → ∞)

● Expected number of unique clusters in a partition:

● Expected number of clusters of size    :

⇒ Small # large clusters, large # small clusters

[Pitman, '02]
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UP Asymptotics (N → ∞)

● Expected number of unique clusters in a partition:

● Expected number of clusters of size    :

⇒ Uniform distribution of cluster sizes
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Simulation: Number of Clusters
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Simulation: Cluster Sizes
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Exchangeability

● Modeling tradeoffs: exchangeability vs. rich-get-richer

● The UP is not exchangeable over cluster assignments:

–                                      is not invariant to permutations

● Previous work has not addressed this:

– We present a new Gibbs sampling algorithm that is 
correct for a fixed ordering of cluster assignments

– We demonstrate that                                      is highly 
robust to permutations of the cluster assignments
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Gibbs Sampler

● Let     be the cluster assignment for     :

–            implies

● Given an ordering of observations:
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Robustness to Orderings
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Document Clustering

● No reason to expect rich-get-richer cluster usage

● Clustering model (generative process):
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Experiments

● 1200 carbon nanotechnology patent abstracts:

– 1000 training abstracts, 200 test abstracts

– Single, fixed ordering

● Compare predictive performance with DP and UP priors:

– 5 Gibbs sampling runs

– 8 concentration parameter values

– Compute (approximate) probability of test documents
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Results
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Summary

● DP & PYP both lead to a “rich-get-richer” property

– Not always appropriate/desirable

● We compared the UP to the DP & PYP in terms of:

1. Asymptotic characteristics

2. Characteristics for typical sample sizes

3. Modeling trade-offs (e.g., exchangeability)

4. Real-world clustering performance
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