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Reminders

» Check the course website: http://www.cs.umass.edu/
~wallach/courses/s12/cmpsci240/

» Eighth homework is due on Friday


http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/

Grades

1. Add discussion section scores, divide by 14, multiply by 10
2. Add homework scores, divide by 250, multiply by 30
3. Divide midterm score by 100, multiply by 30

4. Add 1-3 to obtain your score (max. possible is 70)

5. If your score is 40 or less, you're in danger of getting a D



Recap
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» Transition probability matrix:

pi1 P12 p13 ... p1s
A— P21 P21 p22 ... P2S

pPs1 Ps2 Ps3 ... Pss
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Last Time: Matrices and Vectors for Markov Chains

» Transition probability matrix:

pi1 P12 p13 ... p1s
A— P21 P21 P22 ... P2s
pPs1 Ps2 Ps3 ... Pss

» State probability vector: v(®) with vi(t) = P(X;=1)

» n-step transition probabilities: v(n) = () gn
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Last Time: Steady State

» If vA = v then v is a steady state distribution

> “Most” Markov chains have a unique steady state distribution
that is approached by successive time steps (applications of
transition matrix A) from any starting distribution

» vA = v defines a set of n+ 1 simultaneous equations



Examples of Steady State

» e.g., draw the transition probability graph and find the steady
state distribution for a Markov chain with 4 states and

0 09 01 O
02 08 0 O
0 0 0 1
0 0 06 04

A=
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Irreducible Markov Chains

v

The steady state distribution is v = (0, 0, 0.375, 0.625)

There is no path from states 3 or 4 to states 1 or 2

v

v

A Markov chain is irreducible if there exists a path in the
transition graph from every state to every other state

v

If a Markov chain is not irreducible, then it is reducible
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Communicating Classes

v

State / communicates with state j, i.e., i <> j, if there is some
way of reaching state j from state / and vice versa

v

A set of states C is a communicating class if i <> j for every
i,j € C and no i € C communicates with some j ¢ C

v

C is closed if the probability of leaving it is zero

v

A Markov chain is irreducible if its state space forms a single
communicating class, i.e., i,j € Cforalli,j €S



Examples of Communicating Classes

» e.g., how many communicating classes are there if
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Examples of Communicating Classes

» e.g., how many communicating classes are there if

0 09 01 O
02 08 0 O
A= 0 0 0 1

0 0 06 04

> e.g., what does this say about the reducibility of the chain?



Examples of Steady State

> e.g., draw the transition probability graph and find the steady
state distribution for a Markov chain with 4 states and

0 05 0 0.5
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Examples of Steady State

> e.g., draw the transition probability graph and find the steady
state distribution for a Markov chain with 4 states and

0 05 0 0.5
075 0 025 O

0 075 0 025
075 0 025 O

A=

> e.g., is this Markov chain irreducible?



Periodic Markov Chains

v® = (0.250,0.250, 0.250, 0.250)



Periodic Markov Chains

v® = (0.250,0.250, 0.250, 0.250)
v® = (0.375,0.312,0.125,0.188)



Periodic Markov Chains

v® = (0.250,0.250, 0.250, 0.250)
M = (0.375,0.312,0.125,0.188)
v® = (0.375,0.281,0.125,0.219)

<
I



Periodic Markov Chains
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Periodic Markov Chains

(1.000,0.000, 0.000, 0.000)
(0.000,0.500, 0.000, 0.500)
(0.750,0.000, 0.250, 0.000)

= (0.000,0.562, 0.000, 0.438)

v® = (0.750,0.000,0.250, 0.000)
(0.000,0.562, 0.000, 0.438)
(0.750,0.000, 0.250, 0.000)
(0.000,0.562, 0.000, 0.438)
(0.750,0.000, 0.250, 0.000)
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Periodic Markov Chains

» Chain is always in 1 or 3 on even t and 2 or 4 on odd t
» X ={1,3} - Y = {2,4} and vice versa

» |If the chain is in a state in X at time t, then at time t + 2 it
must return to a state in X; the same is true for Y
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Periodic Markov Chains

> A state / is periodic if the probability of returning to i is zero
except at regular intervals (e.g., every 2 time steps)

> If all states are periodic, then the chain is periodic

» An irreducible Markov chain is periodic if there is some k > 1
such that AX is the transition matrix of a reducible chain
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Steady State

» Periodic: chain moves from group to group in a periodic way

» Reducible: some states can’t be reached from others

» Steady state: if a Markov chain is aperiodic and irreducible
then there must be some v such that for some t

|P(Xe=1i) — vi| <e

for any starting distribution and any positive, real €



For Next Time

» Check the course website: http://www.cs.umass.edu/
~wallach/courses/s12/cmpsci240/

» Eighth homework is due on Friday
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