CMPSCI 240: "Reasoning Under Uncertainty"

Prof. Hanna Wallach wallach@cs.umass.edu

April 24, 2012

Reminders

- Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/
- Eighth homework is due on Friday

Grades

- 1. Add discussion section scores, divide by 14, multiply by 10
- 2. Add homework scores, divide by 250, multiply by 30
- 3. Divide midterm score by 100, multiply by 30
- 4. Add 1–3 to obtain your score (max. possible is 70)
- 5. If your score is 40 or less, you're in danger of getting a D

Recap

Last Time: Matrices and Vectors for Markov Chains

► Transition probability matrix:

$$A = \begin{pmatrix} p_{11} & p_{12} & p_{13} & \cdots & p_{1S} \\ p_{21} & p_{21} & p_{22} & \cdots & p_{2S} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ p_{S1} & p_{S2} & p_{S3} & \cdots & p_{SS} \end{pmatrix}$$

Last Time: Matrices and Vectors for Markov Chains

► Transition probability matrix:

$$A = \begin{pmatrix} p_{11} & p_{12} & p_{13} & \cdots & p_{1S} \\ p_{21} & p_{21} & p_{22} & \cdots & p_{2S} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ p_{S1} & p_{S2} & p_{S3} & \cdots & p_{SS} \end{pmatrix}$$

► State probability vector: $v^{(t)}$ with $v_i^{(t)} = P(X_t = i)$

Last Time: Matrices and Vectors for Markov Chains

Transition probability matrix:

$$A = \begin{pmatrix} p_{11} & p_{12} & p_{13} & \cdots & p_{1S} \\ p_{21} & p_{21} & p_{22} & \cdots & p_{2S} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ p_{S1} & p_{S2} & p_{S3} & \cdots & p_{SS} \end{pmatrix}$$

- ► State probability vector: $v^{(t)}$ with $v_i^{(t)} = P(X_t = i)$
- ▶ *n*-step transition probabilities: $v^{(n)} = v^{(0)}A^n$

Last Time: Steady State

▶ If vA = v then v is a steady state distribution

Last Time: Steady State

- ▶ If vA = v then v is a steady state distribution
- "Most" Markov chains have a unique steady state distribution that is approached by successive time steps (applications of transition matrix A) from any starting distribution

Last Time: Steady State

- ▶ If vA = v then v is a steady state distribution
- "Most" Markov chains have a unique steady state distribution that is approached by successive time steps (applications of transition matrix A) from any starting distribution
- $\triangleright vA = v$ defines a set of n+1 simultaneous equations

Examples of Steady State

e.g., draw the transition probability graph and find the steady state distribution for a Markov chain with 4 states and

$$A = \left(\begin{array}{cccc} 0 & 0.9 & 0.1 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0.6 & 0.4 \end{array}\right)$$

▶ The steady state distribution is $v = \langle 0, 0, 0.375, 0.625 \rangle$

- ▶ The steady state distribution is $v = \langle 0, 0, 0.375, 0.625 \rangle$
- ▶ There is no path from states 3 or 4 to states 1 or 2

- ▶ The steady state distribution is $v = \langle 0, 0, 0.375, 0.625 \rangle$
- ▶ There is no path from states 3 or 4 to states 1 or 2
- ► A Markov chain is irreducible if there exists a path in the transition graph from every state to every other state

- ▶ The steady state distribution is $v = \langle 0, 0, 0.375, 0.625 \rangle$
- ▶ There is no path from states 3 or 4 to states 1 or 2
- ► A Markov chain is irreducible if there exists a path in the transition graph from every state to every other state
- ▶ If a Markov chain is not irreducible, then it is reducible

▶ State i communicates with state j, i.e., $i \leftrightarrow j$, if there is some way of reaching state j from state i and vice versa

- ▶ State i communicates with state j, i.e., $i \leftrightarrow j$, if there is some way of reaching state j from state i and vice versa
- ▶ A set of states C is a communicating class if $i \leftrightarrow j$ for every $i, j \in C$ and no $i \in C$ communicates with some $j \notin C$

- ▶ State i communicates with state j, i.e., $i \leftrightarrow j$, if there is some way of reaching state j from state i and vice versa
- ▶ A set of states C is a communicating class if $i \leftrightarrow j$ for every $i, j \in C$ and no $i \in C$ communicates with some $j \notin C$
- C is closed if the probability of leaving it is zero

- ▶ State i communicates with state j, i.e., $i \leftrightarrow j$, if there is some way of reaching state j from state i and vice versa
- ▶ A set of states C is a communicating class if $i \leftrightarrow j$ for every $i, j \in C$ and no $i \in C$ communicates with some $j \notin C$
- C is closed if the probability of leaving it is zero
- ▶ A Markov chain is irreducible if its state space forms a single communicating class, i.e., $i,j \in C$ for all $i,j \in S$

Examples of Communicating Classes

e.g., how many communicating classes are there if

$$A = \left(\begin{array}{cccc} 0 & 0.9 & 0.1 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0.6 & 0.4 \end{array}\right)$$

Examples of Communicating Classes

e.g., how many communicating classes are there if

$$A = \left(\begin{array}{cccc} 0 & 0.9 & 0.1 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0.6 & 0.4 \end{array}\right)$$

e.g., what does this say about the reducibility of the chain?

Examples of Steady State

 e.g., draw the transition probability graph and find the steady state distribution for a Markov chain with 4 states and

$$A = \left(\begin{array}{cccc} 0 & 0.5 & 0 & 0.5 \\ 0.75 & 0 & 0.25 & 0 \\ 0 & 0.75 & 0 & 0.25 \\ 0.75 & 0 & 0.25 & 0 \end{array}\right)$$

Examples of Steady State

e.g., draw the transition probability graph and find the steady state distribution for a Markov chain with 4 states and

$$A = \left(\begin{array}{cccc} 0 & 0.5 & 0 & 0.5 \\ 0.75 & 0 & 0.25 & 0 \\ 0 & 0.75 & 0 & 0.25 \\ 0.75 & 0 & 0.25 & 0 \end{array}\right)$$

e.g., is this Markov chain irreducible?

$$v^{(0)} = \langle 0.250, 0.250, 0.250, 0.250 \rangle$$

```
v^{(0)} = \langle 0.250, 0.250, 0.250, 0.250 \rangle

v^{(1)} = \langle 0.375, 0.312, 0.125, 0.188 \rangle
```

```
v^{(0)} = \langle 0.250, 0.250, 0.250, 0.250 \rangle

v^{(1)} = \langle 0.375, 0.312, 0.125, 0.188 \rangle

v^{(2)} = \langle 0.375, 0.281, 0.125, 0.219 \rangle
```

```
v^{(0)} = \langle 0.250, 0.250, 0.250, 0.250 \rangle

v^{(1)} = \langle 0.375, 0.312, 0.125, 0.188 \rangle

v^{(2)} = \langle 0.375, 0.281, 0.125, 0.219 \rangle

v^{(3)} = \langle 0.375, 0.281, 0.125, 0.219 \rangle
```

```
\begin{array}{lcl} v^{(0)} & = & \langle 0.250, 0.250, 0.250, 0.250 \rangle \\ v^{(1)} & = & \langle 0.375, 0.312, 0.125, 0.188 \rangle \\ v^{(2)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \\ v^{(3)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \\ v^{(4)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \end{array}
```

```
\begin{array}{lcl} v^{(0)} & = & \langle 0.250, 0.250, 0.250, 0.250 \rangle \\ v^{(1)} & = & \langle 0.375, 0.312, 0.125, 0.188 \rangle \\ v^{(2)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \\ v^{(3)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \\ v^{(4)} & = & \langle 0.375, 0.281, 0.125, 0.219 \rangle \\ \vdots & \vdots & \vdots \end{array}
```

$$v^{(0)} = \langle 1.000, 0.000, 0.000, 0.000 \rangle$$

```
v^{(0)} = \langle 1.000, 0.000, 0.000, 0.000 \rangle

v^{(1)} = \langle 0.000, 0.500, 0.000, 0.500 \rangle
```

```
\begin{array}{lcl} v^{(0)} & = & \langle 1.000, 0.000, 0.000, 0.000 \rangle \\ v^{(1)} & = & \langle 0.000, 0.500, 0.000, 0.500 \rangle \\ v^{(2)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \end{array}
```

```
\begin{array}{lcl} v^{(0)} & = & \langle 1.000, 0.000, 0.000, 0.000 \rangle \\ v^{(1)} & = & \langle 0.000, 0.500, 0.000, 0.500 \rangle \\ v^{(2)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(3)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \end{array}
```

```
\begin{array}{lll} v^{(0)} & = & \langle 1.000, 0.000, 0.000, 0.000 \rangle \\ v^{(1)} & = & \langle 0.000, 0.500, 0.000, 0.500 \rangle \\ v^{(2)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(3)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \\ v^{(4)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \end{array}
```

```
\begin{array}{lcl} v^{(0)} & = & \langle 1.000, 0.000, 0.000, 0.000 \rangle \\ v^{(1)} & = & \langle 0.000, 0.500, 0.000, 0.500 \rangle \\ v^{(2)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(3)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \\ v^{(4)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(5)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \end{array}
```

```
\begin{array}{lll} v^{(0)} & = & \langle 1.000, 0.000, 0.000, 0.000 \rangle \\ v^{(1)} & = & \langle 0.000, 0.500, 0.000, 0.500 \rangle \\ v^{(2)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(3)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \\ v^{(4)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \\ v^{(5)} & = & \langle 0.000, 0.562, 0.000, 0.438 \rangle \\ v^{(6)} & = & \langle 0.750, 0.000, 0.250, 0.000 \rangle \end{array}
```

```
v^{(0)}
              \langle 1.000, 0.000, 0.000, 0.000 \rangle
v^{(1)}
              (0.000, 0.500, 0.000, 0.500)
v^{(2)}
                \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(3)}
               \langle 0.000, 0.562, 0.000, 0.438 \rangle
v^{(4)}
               \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(5)}
                \langle 0.000, 0.562, 0.000, 0.438 \rangle
v^{(6)}
         = \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(7)}
                \langle 0.000, 0.562, 0.000, 0.438 \rangle
```

```
v^{(0)}
              \langle 1.000, 0.000, 0.000, 0.000 \rangle
v^{(1)}
             \langle 0.000, 0.500, 0.000, 0.500 \rangle
v^{(2)}
                \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(3)}
              (0.000, 0.562, 0.000, 0.438)
v^{(4)}
              \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(5)}
                \langle 0.000, 0.562, 0.000, 0.438 \rangle
v^{(6)}
                \langle 0.750, 0.000, 0.250, 0.000 \rangle
v^{(7)}
         = \langle 0.000, 0.562, 0.000, 0.438 \rangle
v^{(8)}
         = \langle 0.750, 0.000, 0.250, 0.000 \rangle
```

▶ Chain is always in 1 or 3 on even t and 2 or 4 on odd t

- ▶ Chain is always in 1 or 3 on even t and 2 or 4 on odd t
- ▶ $X = \{1,3\} \rightarrow Y = \{2,4\}$ and vice versa

- ▶ Chain is always in 1 or 3 on even t and 2 or 4 on odd t
- ► $X = \{1,3\} \to Y = \{2,4\}$ and vice versa
- If the chain is in a state in X at time t, then at time t + 2 it must return to a state in X; the same is true for Y

▶ A state *i* is periodic if the probability of returning to *i* is zero except at regular intervals (e.g., every 2 time steps)

- ► A state *i* is periodic if the probability of returning to *i* is zero except at regular intervals (e.g., every 2 time steps)
- ▶ If all states are periodic, then the chain is periodic

- ► A state *i* is periodic if the probability of returning to *i* is zero except at regular intervals (e.g., every 2 time steps)
- If all states are periodic, then the chain is periodic
- An irreducible Markov chain is periodic if there is some k > 1 such that A^k is the transition matrix of a reducible chain

Steady State

▶ Periodic: chain moves from group to group in a periodic way

Steady State

- ▶ Periodic: chain moves from group to group in a periodic way
- ▶ Reducible: some states can't be reached from others

Steady State

- ▶ Periodic: chain moves from group to group in a periodic way
- Reducible: some states can't be reached from others
- ► Steady state: if a Markov chain is aperiodic and irreducible then there must be some *v* such that for some *t*

$$|P(X_t=i)-v_i|\leq \epsilon$$

for any starting distribution and any positive, real ϵ

For Next Time

- ► Check the course website: http://www.cs.umass.edu/~wallach/courses/s12/cmpsci240/
- ► Eighth homework is due on Friday