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Bayesian Reasoning (Recap)

» The maximum likelihood hypothesis is the hypothesis that
assigns the highest probability to the observed data:

HMY = argmax P(D | H;)

» The maximum a posteriori (MAP) hypothesis is the hypothesis
that that maximizes the posterior probability given D:

HMAP — argmax P(H; | D)
i

P(D | H;) P(H;
= argmax ( ‘P(g) (Hi)
oc argmax P(D | H;) P(H;)

» P(H;) is called the prior probability (or just prior).
» P(H;|D) is called the posterior probability.
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If we have k disjoint, exhaustive hypotheses Hy, ..., Hx (e.g.,
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data D1, ..., Dp, then the posterior probability
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Classification

» Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.
» Lots of real-world problems can be set up as classification
tasks:
» Spam filtering (classes: spam, not spam)
» Handwriting recognition & OCR (classes: one for each letter,
number, or symbol)
» Text classification, image classification, music classification,
etc.

» Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.
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Classification

» An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

» Lots of classifiers are based on Bayesian reasoning:

» The classes become the hypotheses that are being tested.

» The item being classified is turned into a collection of data
called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

» The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.
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But where do these probabilities come from?
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Learning Probabilities From Data

» To use MAP, we need probabilities for P(H;); that is,

P(spam) and P(not spam), as well as P(F1 N F5s N F3| H;).
» We can estimate these probabilities if we have access to a lot

of email that has already been classified as spam or not spam.
» How can we estimate P(spam)?

of emails labeled as spam
» P(spam) = i > 5P
# of total emails

» How can we estimate P(F; N F5 N F3|spam)?
» P(F1 N FsNF3|spam) =

# of emails labeled as spam with those exact features

# of total spam emails

» Why is that last estimate going to be a problem?
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Conditional Independence to the Rescue!

> It is unlikely that we would ever have enough email to get a
good estimate of P(Fy N F5 N F3|spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

> Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

» Therefore,
P(F1 N Fs N F3|spam) =
P(F1 | spam) - P(F5 | spam) - P(F3 | spam)

» Those probabilities are easier to get good estimates for!

> A classifier that makes this assumption is called a Naive Bayes
classifier.
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Learning Probabilities From Data

» How would we estimate P(Fy | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it's a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

» P(Fy|spam) =
# of emails labeled as spam containing the word Wallach

# of total spam emails

» Spam filters typically operate so every word in an email is its
own feature. What happens if we see a word we've never
encountered before?

» P(Fy|spam) =
# of emails labeled as spam containing the word Wallach + 1

# of total spam emails + 2
» This is called smoothing, and it removes the chance that a
zero probability will wipe out the entire calculation.
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» The email can be classified by computing:
HMAP — argmax P(D | H;) P(H;)
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= argmax H P(F; | H;) | P(H))
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> In other words, compute likelihood x prior for each hypothesis
(spam vs. not spam) and see which has a greater value
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Summary

» Estimate the priors using:

_ # emails labeled as H;

P(H;)

total # of emails
» Estimate the probability of a feature given a class using:

_ # of emails labeled as H; containing F; + 1

P(F; | H;) = :
(F; [ Hi) # of emails labeled as H; + 2



