
CMPSCI 240: “Reasoning Under Uncertainty”
Lecture 20x

Not-A-Prof. Phil Kirlin
pkirlin@cs.umass.edu

April 5, 2012

Bayesian Reasoning (Recap)

I The maximum likelihood hypothesis is the hypothesis that
assigns the highest probability to the observed data:

HML = argmax
i

P(D |Hi)

I The maximum a posteriori (MAP) hypothesis is the hypothesis
that that maximizes the posterior probability given D:

HMAP = argmax
i

P(Hi |D)

= argmax
i

P(D |Hi)P(Hi)

P(D)

∝ argmax
i

P(D |Hi)P(Hi)

I P(Hi) is called the prior probability (or just prior).

I P(Hi |D) is called the posterior probability.

Independent Pieces of Data (Recap)

Definition
If we have 2 pieces of data D1 and D2 that are are conditionally
independent given Hi , then the probability of D1 ∩ D2 given Hi is

P(D1 ∩ D2 |Hi) = P(D1 |Hi)P(D2 |D1,Hi)

= P(D1 |Hi)P(D2 |Hi)

If we have m conditionally independent pieces of data D1, . . . ,Dm,
then

P(D1 ∩ . . . ∩ Dm |Hi) =
m∏
j=1

P(Dj |Hi)

Independent Pieces of Data (Recap)

Definition
If we have 2 pieces of data D1 and D2 that are are conditionally
independent given Hi , then the probability of D1 ∩ D2 given Hi is

P(D1 ∩ D2 |Hi) = P(D1 |Hi)P(D2 |D1,Hi)

= P(D1 |Hi)P(D2 |Hi)

If we have m conditionally independent pieces of data D1, . . . ,Dm,
then

P(D1 ∩ . . . ∩ Dm |Hi) =
m∏
j=1

P(Dj |Hi)

Independent Pieces of Data (Recap)

Definition
If we have 2 pieces of data D1 and D2 that are are conditionally
independent given Hi , then the probability of D1 ∩ D2 given Hi is

P(D1 ∩ D2 |Hi) = P(D1 |Hi)P(D2 |D1,Hi)

= P(D1 |Hi)P(D2 |Hi)

If we have m conditionally independent pieces of data D1, . . . ,Dm,
then

P(D1 ∩ . . . ∩ Dm |Hi) =
m∏
j=1

P(Dj |Hi)

Combining Evidence (Recap)

Definition
If we have k disjoint, exhaustive hypotheses H1, . . . ,Hk (e.g.,
rainy, dry) and m conditionally independent pieces of observed
data D1, . . . ,Dm, then the posterior probability
P (Hi |D1 ∩ . . . ∩ Dm) of hypothesis Hi (i = 1, . . . , k) given the
observed data D1 ∩ . . . ∩ Dm is:

P (Hi |D1 ∩ . . . ∩ Dm) =

(∏m
j=1 P (Dj |Hi)

)
P (Hi)

P (D1 ∩ . . . ∩ Dm)

where

P(D1 ∩ . . . ∩ Dm) =
∑k

i=1

(∏m
j=1 P(Dj |Hi)

)
P(Hi)

Combining Evidence (Recap)

Definition
If we have k disjoint, exhaustive hypotheses H1, . . . ,Hk (e.g.,
rainy, dry) and m conditionally independent pieces of observed
data D1, . . . ,Dm, then the posterior probability
P (Hi |D1 ∩ . . . ∩ Dm) of hypothesis Hi (i = 1, . . . , k) given the
observed data D1 ∩ . . . ∩ Dm is:

P (Hi |D1 ∩ . . . ∩ Dm) =

(∏m
j=1 P (Dj |Hi)

)
P (Hi)

P (D1 ∩ . . . ∩ Dm)

where

P(D1 ∩ . . . ∩ Dm) =
∑k

i=1

(∏m
j=1 P(Dj |Hi)

)
P(Hi)

Combining Evidence (Recap)

Definition
If we have k disjoint, exhaustive hypotheses H1, . . . ,Hk (e.g.,
rainy, dry) and m conditionally independent pieces of observed
data D1, . . . ,Dm, then the posterior probability
P (Hi |D1 ∩ . . . ∩ Dm) of hypothesis Hi (i = 1, . . . , k) given the
observed data D1 ∩ . . . ∩ Dm is:

P (Hi |D1 ∩ . . . ∩ Dm) =

(∏m
j=1 P (Dj |Hi)

)
P (Hi)

P (D1 ∩ . . . ∩ Dm)

where

P(D1 ∩ . . . ∩ Dm) =
∑k

i=1

(∏m
j=1 P(Dj |Hi)

)
P(Hi)

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)
I Handwriting recognition & OCR (classes: one for each letter,

number, or symbol)
I Text classification, image classification, music classification,

etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)
I Handwriting recognition & OCR (classes: one for each letter,

number, or symbol)
I Text classification, image classification, music classification,

etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)

I Handwriting recognition & OCR (classes: one for each letter,
number, or symbol)

I Text classification, image classification, music classification,
etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)
I Handwriting recognition & OCR (classes: one for each letter,

number, or symbol)

I Text classification, image classification, music classification,
etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)
I Handwriting recognition & OCR (classes: one for each letter,

number, or symbol)
I Text classification, image classification, music classification,

etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I Classification is the problem of identifying which of a set of
categories (called classes) a particular item belongs.

I Lots of real-world problems can be set up as classification
tasks:

I Spam filtering (classes: spam, not spam)
I Handwriting recognition & OCR (classes: one for each letter,

number, or symbol)
I Text classification, image classification, music classification,

etc.

I Almost any problem where you are assigning some sort of
label to items can be set up as a classification task.

Classification

I An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

I Lots of classifiers are based on Bayesian reasoning:
I The classes become the hypotheses that are being tested.
I The item being classified is turned into a collection of data

called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

I The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.

Classification

I An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

I Lots of classifiers are based on Bayesian reasoning:

I The classes become the hypotheses that are being tested.
I The item being classified is turned into a collection of data

called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

I The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.

Classification

I An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

I Lots of classifiers are based on Bayesian reasoning:
I The classes become the hypotheses that are being tested.

I The item being classified is turned into a collection of data
called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

I The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.

Classification

I An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

I Lots of classifiers are based on Bayesian reasoning:
I The classes become the hypotheses that are being tested.
I The item being classified is turned into a collection of data

called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

I The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.

Classification

I An algorithm that does classification is called a classifier.
Classifiers take some sort of item as input and output the
class it thinks that item belongs to.

I Lots of classifiers are based on Bayesian reasoning:
I The classes become the hypotheses that are being tested.
I The item being classified is turned into a collection of data

called features. Useful features are attributes of the item that
imply a strong connection to certain classes.

I The classification algorithm is typically either maximum
likelihood or MAP, depending on what data we have available.

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Example: Spam Classification

I When a new email arrives, we want to label it as either spam
or not spam (our two classes or hypotheses).

I A useful set of features might be events corresponding to
whether or not certain words appear in the email:

I F1,F
c
1 : “Wallach” appears/does not appear in the email

I F2,F
c
2 : “viagra” appears/does not appear in the email

I F3,F
c
3 : “cash” appears/does not appear in the email

I Let’s say this email contains the words “Wallach” and “cash,”
but not “viagra.”

I Therefore, the features for this email are F1, F c
2 , and F3.

I If we use the MAP rule for classification, we need to compute

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam,notspam}

P(F1 ∩ F c
2 ∩ F3 |Hi)P(Hi)

I But where do these probabilities come from?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails

I How can we estimate P(F1 ∩ F c
2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails

I Why is that last estimate going to be a problem?

Learning Probabilities From Data

I To use MAP, we need probabilities for P(Hi); that is,
P(spam) and P(not spam), as well as P(F1 ∩ F c

2 ∩ F3 |Hi).

I We can estimate these probabilities if we have access to a lot
of email that has already been classified as spam or not spam.

I How can we estimate P(spam)?

I P(spam) =
of emails labeled as spam

of total emails
I How can we estimate P(F1 ∩ F c

2 ∩ F3 | spam)?

I P(F1 ∩ F c
2 ∩ F3 | spam) =

of emails labeled as spam with those exact features

of total spam emails
I Why is that last estimate going to be a problem?

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Conditional Independence to the Rescue!

I It is unlikely that we would ever have enough email to get a
good estimate of P(F1 ∩ F c

2 ∩ F3 | spam) using the previous
idea because the number of emails in our collection with the
exact same feature set as our new email is probably very
small, or zero.

I Therefore, we will assume all our features are conditionally
independent of each other, given the hypothesis (spam or not
spam).

I Therefore,
P(F1 ∩ F c

2 ∩ F3 | spam) =
P(F1 | spam) · P(F c

2 | spam) · P(F3 | spam)

I Those probabilities are easier to get good estimates for!

I A classifier that makes this assumption is called a Naive Bayes
classifier.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails
I Spam filters typically operate so every word in an email is its

own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2
I This is called smoothing, and it removes the chance that a

zero probability will wipe out the entire calculation.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails
I Spam filters typically operate so every word in an email is its

own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2
I This is called smoothing, and it removes the chance that a

zero probability will wipe out the entire calculation.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails

I Spam filters typically operate so every word in an email is its
own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2
I This is called smoothing, and it removes the chance that a

zero probability will wipe out the entire calculation.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails
I Spam filters typically operate so every word in an email is its

own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2
I This is called smoothing, and it removes the chance that a

zero probability will wipe out the entire calculation.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails
I Spam filters typically operate so every word in an email is its

own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2

I This is called smoothing, and it removes the chance that a
zero probability will wipe out the entire calculation.

Learning Probabilities From Data

I How would we estimate P(F1 | spam), or equivalently, the
probability an email contains the word “Wallach,” given that
it’s a spam email? (Remember, we have a lot of existing
emails already classified as spam or not spam.)

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach

of total spam emails
I Spam filters typically operate so every word in an email is its

own feature. What happens if we see a word we’ve never
encountered before?

I P(F1 | spam) =
of emails labeled as spam containing the word Wallach + 1

of total spam emails + 2
I This is called smoothing, and it removes the chance that a

zero probability will wipe out the entire calculation.

Summary of Naive Bayes Classification

I The email can be classified by computing:

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam, not spam}

(F1 ∩ · · · ∩ Fm |Hi)P(Hi)

= argmax
i∈{spam, not spam}

(F1 |Hi) · · · (Fm |Hi)P(Hi)

= argmax
i∈{spam, not spam}

 m∏
j=1

P(Fj |Hi)

P(Hi)

I In other words, compute likelihood × prior for each hypothesis
(spam vs. not spam) and see which has a greater value

Summary of Naive Bayes Classification

I The email can be classified by computing:

HMAP = argmax
i

P(D |Hi)P(Hi)

= argmax
i∈{spam, not spam}

(F1 ∩ · · · ∩ Fm |Hi)P(Hi)

= argmax
i∈{spam, not spam}

(F1 |Hi) · · · (Fm |Hi)P(Hi)

= argmax
i∈{spam, not spam}

 m∏
j=1

P(Fj |Hi)

P(Hi)

I In other words, compute likelihood × prior for each hypothesis
(spam vs. not spam) and see which has a greater value

Summary

I Estimate the priors using:

P(Hi) =
emails labeled as Hi

total # of emails

I Estimate the probability of a feature given a class using:

P(Fj |Hi) =
of emails labeled as Hi containing Fj + 1

of emails labeled as Hi + 2

Summary

I Estimate the priors using:

P(Hi) =
emails labeled as Hi

total # of emails

I Estimate the probability of a feature given a class using:

P(Fj |Hi) =
of emails labeled as Hi containing Fj + 1

of emails labeled as Hi + 2

