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Our data consist of words w = {wy, ..., wy}, where each w; belongs to some
document d;, as in a word-document co-occurrence matrix. For each document
we have a multinomial distribution over T' topics, with parameters 8(%), so for
a word in document d;, P(z; = j) = Hg-d"). The jth topic is represented by a
multinomial distribution over the W words in the vocabulary, with parameters
#9 so P(w;|z; = j) = ,(,i) To make predictions about new documents, we
need to assume a prior distribution on the parameters #(%). The Dirichlet
distribution is conjugate to the multinomial, so we take a Dirichlet prior on
6(4). We then model the distribution over words in any one document as the
mixture

P(w;) = ZP(wi|Zi = j)P(z; = j)- (1)

Blei, Ng and Jordan (2002) gave an algorithm for obtaining approximate
maximum-likelihood estimates for ¢%) and the hyperparameters of the prior
on #(%) terming this procedure Latent Dirichlet Allocation (LDA). Here, we
use a symmetric Dirichlet(c) prior on #(%) for all documents, a symmetric
Dirichlet(3) prior on ¢ for all topics, and Markov chain Monte Carlo for
inference. An advantage of this approach is that we do not need to explicitly
represent the model parameters: we can integrate out 6 and ¢, defining model
simply in terms of the assignments of words to topics indicated by the z;. Since
we are not performing inference in the Dirichlet hyperparameters, this approach
is not necessarily going to lead to the same results as Latent Dirichlet Allocation.
In particular, the symmetric prior on topics is likely to mean that there is likely
to be little variation in the way topics are used, although the extent to which
this is true will be influenced by the choice of a. An empirical Bayes procedure
could be used to estimate asymmetric o parameters, resulting in an approach
closer to Latent Dirichlet Allocation.

Markov chain Monte Carlo is a procedure for obtaining samples from com-
plicated probability distributions, allowing a Markov chain to converge to the
target distribution and then drawing samples from the Markov chain (see Gilks,
Richardson & Spiegelhalter, 1996). Each state of the chain is an assignment
of values to the variables being sampled, and transitions between states follow
a simple rule. We use Gibbs sampling, where the next state is reached by se-



quentially sampling all variables from their distribution when conditioned on
the current values of all other variables and the data. We will sample only the
assignments of words to topics, z;. Our complete probability model is

wi|zi, %) ~ Discrete(¢(*"))
¢ ~ Dirichlet(B)
2|04~ Discrete((4))
0 ~ Dirichlet(a)

So the conditional posterior distribution for z; is given by
P(zi = jlz—i, W) o< P(wi|zi = j, 2—i, w_i)P(2i = j|z—i), (2)

where z_; is the assignment of all zj such that k # 4. This is an application of
Bayes’ rule, where the first term on the right hand side is a likelihood, and the
second a prior.

The parameters  and ¢ do not appear in the above expression because we
can obtain conditional probabilities for the z; that depend only on z_; and w
by integrating over the parameter values that arise in each of the terms on the
right hand side of the equation. For the first term, we have

P(w;ilz; = j,2_i, W_;) = /P(wi|2i = 3,0V P(¢D|z_;, w_;) dp'D,  (3)

where ¢) is the multinomial distribution over words associated with topic j,
and the integral is over all such distributions. We can obtain the rightmost term
from Bayes’ rule

P(¢\z_i,w_;) o< P(w_i|¢\7),z_;) P(§). (4)

Since P(¢\7)) is Dirichlet(3) and conjugate to P(w_;|¢(),z_;), the posterior
distribution P(¢)|z_;, w_;) will be Dirichlet(8 + n(w) ), where n® )J- is the
number of instances of word w assigned to topic j, not including the current
word. The involvement of z_; in this conditional probability is to partition the
words into sets that are assigned to the different topics. Only the words assigned
to topic j will influence the posterior distribution of ¢().

Since the first term on the right hand side of Equation 3 is just ngi), we can
complete the integral to obtain

. n') + 8
P(wilz; = j,2—i, W—;) = ()7 (5)
n_;;+Wp

where n( ) 3,; 18 the total number of words assigned to topic j, not including
the current one. This is the predictive distribution for a multinomial-Dirichlet
model, and can only be obtained here because z is known. f is a hyperparameter
that determines how heavily this empirical distribution is smoothed, and can
be chosen to give the desired resolution in the resulting distribution.



We can find P(z; = j|z_;) in the same way. Integrating over the multinomial
distribution over topics for the document from which w; is drawn, specified by
6(4) we obtain

P(zi=jlz_s) = /P(zi = j16\))P(0(4)|z_;) dold)
()
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The result follows from the choice of a Dirichlet(a) prior for 6(%). Here, n(d )

is the number of words from document d; assigned to topic j, not 1nc1ud1ng

(d ) is the total number of words in document d;, not

the current one, and n'
including the current one
Putting together the results in Equations 5 and 6, we obtain the conditional

probabilities

(f;l;"‘ﬂ n(d) 4+ o

n®) +W,Bn(d’) +Ta

71‘7

(7)

P(z; = jlz_i, W)

The Monte Carlo algorithm is then straightforward. The z; are initialized to
values between 1 and T', determining the initial state of the Markov chain. The
chain is then run for a number of iterations, each time finding a new state by
sampling each z; from the distribution specified by Equation 7. After enough
iterations for the chain to approach the target distribution, the current values
of the z; are recorded. Subsequent samples are taken after an appropriate lag,
to ensure that their autocorrelation is low.
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