
CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

<1> 20 Points – In this question you see a main program calling a subroutine. The condition
of the stack at position A is shown (the stack pointer SP is pointing at the current top of
the stack, which contains some arbitrary number we denote by XXXXXX).

(1) Trace the execution of the program from position A through position F, and as
you trace the program show the condition of the stack at positions B, C, D, E, and F
by filling the appropriate values or symbols into the corresponding boxes (do not fill
anything into the boxes for position A; it is given). For example, if the value being
pushed onto the stack comes from variable Temp then write “Temp” into the correct
box; if the value comes from a constant write the constant in the box, and if the value
comes from a register write the name of the register in the box.

(2) Fill in the blank for the LDR instruction in SUB with the correct offset to load into
R0 the first formal parameter to the subroutine (i.e., the value passed in from actual
parameter Temp).

(3) Fill in the blank for the STR instruction in SUB with the correct offset to store R0
into the value returned by the subroutine (the second parameter slot in the call).

(4) Yes or No: as far as you can tell, is this subroutine completely transparent to all
registers except the status flags? YES

– Page 1 –

CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

<2> 5 Points – I want to load the contents of integer variable Temp into floating point register
F0. Describe in words the problem with the following code fragment. What will happen
when it executes? Without changing the definition of Temp, fix the problem. Use any
registers necessary.

 LDFS F0,Temp LDR R0,Temp
 FLT F0,R0
 …

 Temp DCD 10

 Integer variable Temp needs to be converted to a floating point number before it can go
into F0, so it must be first loaded into an integer register and converted with the FLT
instruction. Note that the code as written will actually load the integer 10 into F0, but the
bit pattern corresponds to a small denormalized floating point number, very close to zero.

<3> 15 Points – In a high-level language such as Pascal, I declare an array of 32-bit integers
with the statement Var A : Array [-10..10] Of Integer ; where the first
element of the array is at A[-10] and the last element of the array is at A[10]. In
translating this array declaration into ARM assembly language, I use the ARM directive
A % 84 to allocate and initialize to zero all 21 elements of the array (21 elements × 4
bytes per element = 84 bytes of memory).

(1) In pure algebra, write a mathematical expression that shows the mapping function
from array index X to the offset in memory of the required item, relative to the
base address of the array. Your answer should be a polynomial on X of the form:
Offset f(X). Tell me what f is.

 Offset (X + 10) × 4
 Offset (4X + 40)

 The X+10 term is to normalize the Pascal array to a zero-based equivalent, then
the multiplication by 4 is to convert the array index into a memory offset (since
there are 4 bytes per array cell).

(2) Write the correct ARM assembly language statements to load into register R0 the
contents of A[X] where X is an integer variable stored in memory containing a
number between -10 and 10. You do not need to perform range checking on X.

 ADR R5,A ADR R5,A
 LDR R1,X LDR R1,X
 ADD R1,R1,#10 ADD R1,R1,#10
 LDR R0,[R5,R1,LSL #2] MOV R1,R1,LSL #2
 LDR R0,[R5,R1]

– Page 2 –

CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

(3) Write the correct ARM assembly language statements to load into register R0 the
contents of A[7]. By using a constant subscript (the 7) you are free to optimize
your code in any manner you see fit.

 ADR R5,A ADR R5,A
 MOV R1,#7 MOV R1,#17
 ADD R1,R1,#10 LDR R0,[R5,R1,LSL #2]
 LDR R0,[R5,R1,LSL #2]
 ADR R5,A
 ADR R5,A LDR R0,[R5,#68]
 MOV R1,#68
 LDR R0,[R5,R1] ADR R5,A+68
 LDR R0,[R5]

<4> 12 Points – In the subroutine call below, which of the parameters are call-by-value, call-
by-return, call-by-value-return, and call-by-reference?

 | ADR R0,Result Reference
 | STR R0,[SP,#-4]!
 | | LDR R0,Frog Value-Return
 | | STR R0,[SP,#-4]!
 | | | SUB SP,SP,#4 Return
 | | | | LDR R0,Toad Value
 | | | | STR R0,[SP,#-4]!
 | | | | | BL SUBROUTINE
 | | | | ADD SP,SP,#4
 | | | LDR R0,[SP],#4
 | | | STR R0,Newt
 | | LDR R0,[SP],#4
 | | STR R0,Frog
 | ADD SP,SP,#4

<5> 5 Points – In each of the following problems you are to multiply the contents of integer
register R0 by a constant value, in one instruction, without using any other registers, and
without using any explicit multiplication instructions such as MUL, MLA, or UMULL. If
the task cannot be accomplished in a single instruction, answer “Can’t be Done”.

 (1) R0 := R0 × 17 ADD R0,R0,R0,LSL #4

 (2) R0 := R0 × 15 RSB R0,R0,R0,LSL #4

 (3) R0 := R0 × 16 MOV R0,R0,LSL #4

 (4) R0 := R0 × -15 SUB R0,R0,R0,LSL #4

 (5) R0 := R0 × 10 Can’t be done ADD R0,R0,R0,LSL #2
 in one line: MOV R0,R0,LSL #1

– Page 3 –

CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

<6> 8 Points – Short Answer – When is it necessary in a subroutine to use the IP register
instead of the SP register for referencing parameters on the stack? When is it not
necessary? How does recursion fit into your answers?

 SP can be used instead of IP in any subroutine which does not use the stack after
registers are pushed for transparency. If the subroutine uses the stack for temporary
values then the stack pointer is modified and all references to variables in the current
stack frame change offsets; use of IP allows stack modification without changing offsets
into the stack frame. Recursive routines usually push parameters onto the stack before
the internal calls can be executed; this essentially forces the use of IP to reference the
stack frame.

<7> 12 Points – The following clocked circuit shows a 6-bit shift register where the left-most
bit gets each new value from eXclusive-ORing the current values of the fifth and sixth
bits. This forms a “63-step pseudo-random number generator” circuit. Assume that the
current state of the shift register is 1 0 0 1 1 1. Clock the circuit 6 times, and show
the output state of the shift register after each clock pulse.

 A B C D E F
Current Output: 1 0 0 1 1 1
After Clock #1: 0 1 0 0 1 1
After Clock #2: 0 0 1 0 0 1
After Clock #3: 1 0 0 1 0 0
After Clock #4: 0 1 0 0 1 0
After Clock #5: 1 0 1 0 0 1
After Clock #6: 1 1 0 1 0 0

 For each clock pulse the output of A will become the XOR of the previous values of E
and F, and all other bits represent the previous state shifted right 1 bit (the old value of F
is lost).

– Page 4 –

CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

<8> 5 Points – Using only AND, OR, and NOT gates, draw a circuit below that performs the
exclusive-NOR function for two inputs. Exclusive-NOR outputs 1 when the two inputs
are the same, and outputs 0 when they are different.

 Any of the following circuits will work. The first circuit outputs 1 if either AND-gate is
triggered; the top one triggers if both inputs are 1, and the bottom one triggers through
the NOT-gates if both inputs are 0. The two NOT-gates and the connected AND-gate
performs the function of a NOR-gate. The second circuit is the same as the first, but it
uses a different equivalent implementation of the NOR-gate using a NOT-gate and an
OR-gate. In the third circuit the AND-gates are triggered if the inputs are different, so
the output of the OR-gate is 1 if the inputs are different. This is an XOR-gate, which
when run through the final NOT-gate becomes an XNOR-gate.

– Page 5 –

CMPSCI 201 – Spring 2004 – Midterm #2 Answers – Professor William T. Verts

– Page 6 –

<9> 6 Points – In the following D-type flip-flop, assume that input D = 1, input Clock = 0,
and internal point Master Q = 0. Fill in the outputs of every gate (yes, it is possible to do
this from the given information).

 In the first view, you need to know that Master Q = 0 to force the rightmost six NAND-
gates into a known state. After that, Master Q is free to change as needed.

<10> 6 Points – Based on the previous problem, leave D = 1 but set Clock to 1, and then fill in
the outputs of every gate as before.

<11> 6 Points – Based on the previous problem, leave D = 1 and clear Clock back to 0, and
then fill in the outputs of every gate as before.

