
CMPSCI 201 – Spring 2004 – Midterm #1 Answers – Professor William T. Verts

<1> 10 Points – All of the following ARM assembly language statements contain errors.
Errors may include syntax errors, illegal addressing, use of inappropriate registers,
invalid constants, etc. Identify in each instruction where the error occurs, and tell me
what kind of error is present.

 1. MOV R0,Temp Use LDR, not MOV (can’t MOV from memory)

 2. ADD F1,F0,R2 Can’t use floating registers with integer ADD

 3. ADFS F2,F3,#15 Floating point constant is out of range (0–5, 10, ½)

 4. MOV R4,#513 Integer constant is out of range (wider than 8 bits)

 5. MUL R0,R0,R0 Destination, first source can’t be same in MUL

 6. ADD R0,R0,1 Constant is missing # sign (should be #1)

 7. LDR LR,R4 Use MOV, not LDR (can’t LDR from register)

 8. SBT R3,R5,R1 Unknown Op Code

 9. ADDGS R0,R0,R6 Unknown Condition

 10. AND R5,R6 Missing second operand: AND R5,R6,__

<2> 10 Points – In each of the following problems you are to multiply the contents of integer
register R0 by a constant value, in one instruction, without using any other registers, and
without using any explicit multiplication instruction such as MUL, MLA, or UMULL.

1. R0 := R0 × 5 ADD R0,R0,R0,LSL #2 (R0 + 4×R0)

2. R0 := R0 × 7 RSB R0,R0,R0,LSL #3 (8×R0 - R0)

3. R0 := R0 × 8 MOV R0,R0,LSL #3 (8×R0)

4. R0 := R0 × -7 SUB R0,R0,R0,LSL #3 (R0 - 8×R0)

5. R0 := R0 × -1 SUB R0,R0,R0,LSL #1 (R0 - 2×R0)
 -or- RSB R0,R0,#0 (0 - R0)

<3> 5 Points – Short Essay Answer – You must first assemble and then link your program
before loading it into the ARMulator. What is the purpose of the link step?

 The link step resolves any symbol addresses left open by the assembler, creating the final
runable binary from one or more assembled blocks. Symbols referenced in one block
may be defined in another.

– Page 1 –

CMPSCI 201 – Spring 2004 – Midterm #1 Answers – Professor William T. Verts

<4> 5 Points – Convert the decimal number 7.625 into (a) binary scientific notation (i.e.,
±1.xxxx×2Y), and (b) the equivalent binary single-precision floating-point representation.

 7.625 = 111.101 = 1.11101×22 (binary scientific notation)
 Biased exponent = 127 + 2 = 129 = 100000012
 Mantissa = .11101, and the remainder of the mantissa padded with 0 bits.
 Number is positive so sign bit = 0
 Final result = 0 10000001 11101000000000000000000

<5> 5 Points – Examine the following binary representation of a single-precision floating-
point number and show me (a) the equivalent binary scientific notation (i.e., ±1.xxxx×2Y)
and (b) the final equivalent decimal value.

 Sign bit = 1 so number is negative.
 Biased Exponent = 100001002 = 132, removing bias gives 132 – 127 = 5 true exponent
 Mantissa = .1110101, so true fraction = 1.1110101
 Binary Scientific Notation = –1.1110101×25
 Binary Fraction = –111101.01
 Decimal Value = –61.25

<6> 10 Points – Short Essay Answer – Write a short paragraph comparing the advantages and
disadvantages of RISC machines versus CISC machines. Where does each have
advantages over the other? Where does each have disadvantages? Give examples where
appropriate.

 CISC: Lots of functionality in each op code, so a properly designed program will use
 a few very powerful instructions.
 But: The circuitry to implement each instruction is complicated, it may require a lot of
 “setup” to take advantage of one of these special instructions, and some
 specialized op codes might never be used. Instructions tend to be variable length.

 RISC: Each instruction is very simple and very fast (usually fixed-length, and 1 cycle per
 instruction), hardware implementation often small and simple, and there are only
 a few distinct op codes to remember.
 But: Doing any significant task may require many more instructions than CISC.

– Page 2 –

CMPSCI 201 – Spring 2004 – Midterm #1 Answers – Professor William T. Verts

<7> 10 Points – In one of our exercises we evaluated the integer polynomial 2x2 – 4x + 5,
where the value of x was in R0 and the result was computed into R1. This time I want you to
write a code fragment (not a complete subroutine) to evaluate the same polynomial using
floating-point numbers, where the value of x is in register F0 and the result is to be placed into
F1. Do not worry about saving and restoring temporary registers, just compute the result!

Solution #1
MUFS F2,F0,F0 F2=x2
ADFS F2,F2,F2 F2=2x2
MUFS F1,F0,#4.0 F1=4x
RSFS F1,F1,F2 F1=2x2-4x
ADFS F1,F1,#5.0 F1=2x2-4x+5

Solution #2
POWS F1,F0,#2.0 F1=x2
MUFS F1,F1,#2.0 F1=2x2
MUFS F2,F0,#4.0 F2=4x
SUFS F1,F1,F2 F1=2x2-4x
ADFS F1,F1,#5.0 F1=2x2-4x+5

<8> 15 Points – Trace the following ARM code and show the values of register R0 (in binary)
and the flags after each instruction. Write “?” in places where the value is unknowable at
the time.

 Instructions N Z V C R0 (in binary) ____
 ? ? ? ? ????????????????
 MVNS R0,#0 1 0 ? ? 11111…………………1111
 ADDS R0,R0,R0 1 0 0 1 11111…………………1110
 ADC R0,R0,#0 1 0 0 1 11111…………………1111
 MOVS R0,#3,2 1 0 0 1 11000…………………0000
 ADCS R0,R0,R0,ASR #1 1 0 0 1 10100…………………0001

 Note: the #3,2 means “3, right rotate 2 bits”

<9> 10 Points – Write the following code fragment in ARM assembly code, using as few
instructions as possible.

 If (R0 is Odd) Then R1 := R1+R0
 Else R1 := R1-R0

For R0 to be odd, its lowest (rightmost) bit must be equal to 1.

Solution #1 Solution #2
No Extra Registers Uses Extra Register R2
TST R0,#1 ANDS R2,R0,#1
ADDNE R1,R1,R0 ADDNE R1,R1,R0
SUBEQ R1,R1,R0 SUBEQ R1,R1,R0

– Page 3 –

CMPSCI 201 – Spring 2004 – Midterm #1 Answers – Professor William T. Verts

<10> 20 Points – Translate the following high-level procedure into a complete, correct, ARM
assembly language subroutine. Input parameter N is to be passed in through the R0
register. Three ASCII-based ARM subroutines are available, called Print_Blank,
Print_Star, and Print_LF (remember that line-feed = ASCII 10), that may be
called by your subroutine; all three are completely transparent. The Do-EndDo loop
construct shown below runs some fixed number of times without providing an index
variable to its loop body; this allows you to write either a count-up loop or a count-down
loop depending on which generates the most efficient assembly language. I will be
looking for efficiency in your code, so pay particular attention to the overall number of
instructions, execution time, register usage, etc. As always, your subroutine must be
completely transparent with respect to its register usage, but the only LDR/STR
instructions you are allowed to use are for saving and restoring registers.

<11> 5 Points Extra Credit – What is the shape printed out by this subroutine/procedure?

Procedure Print_Shape(N)

L := 2 * N – 1
I := 1
While (I <= L) Do
 T := Abs(I - N)

 Do T Times
 Print (" ")
 EndDo

 Do (L – T) Times
 Print ("*")
 Print (" ")
 EndDo

 Print (10)
 I := I + 1
EndWhile

EndProcedure

The printed shape is a hexagon. For example, if N = 3, then L = 5 and the shape will be:

 * * * T=Abs(1-3) = 2 blanks, L–T = 3 star-blanks
 * * * * T=Abs(2-3) = 1 blanks, L–T = 4 star-blanks
 * * * * * T=Abs(3-3) = 0 blanks, L–T = 5 star-blanks
 * * * * T=Abs(4-3) = 1 blanks, L–T = 4 star-blanks
 * * * T=Abs(5-3) = 2 blanks, L–T = 3 star-blanks

– Page 4 –

CMPSCI 201 – Spring 2004 – Midterm #1 Answers – Professor William T. Verts

– Page 5 –

Print_Shape STR LR,SaveLR
 STR R1,SaveR1 R1 used as L
 STR R2,SaveR2 R2 used as I
 STR R3,SaveR3 R3 used as T
 STR R4,SaveR4 R4 used as loop ctr

 MOV R1,R0,LSL #1
 SUB R1,R1,#1 L := 2 * N – 1
 MOV R2,#1 I := 1
While1 CMP R2,R1 While (I <= L) Do
 BGT EndWhile1
 SUBS R3,R2,R0
 RSBMI R3,R3,#0 T := Abs(I-N)
 MOVS R4,R3 Do T Times
 BEQ EndLoop1 (T will be 0)
Loop1 BL Print_Blank Print (" ")
 SUBS R4,R4,#1
 BNE Loop1
EndLoop1 EndDo
 SUB R4,R1,R3 Do L – T Times
Loop2 BL Print_Star Print ("*")
 BL Print_Blank Print (" ")
 SUBS R4,R4,#1
 BNE Loop2 EndDo
 BL Print_LF Print (10)
 ADD R2,R2,#1 I := I + 1
 B While1
EndWhile1 EndWhile

 LDR R4,SaveR4
 LDR R3,SaveR3
 LDR R2,SaveR2
 LDR R1,SaveR1
 LDR PC,SaveLR Return

SaveLR DCD 0
SaveR1 DCD 0
SaveR2 DCD 0
SaveR3 DCD 0
SaveR4 DCD 0

 No need to save and restore R0 since it never changes (even though the Print_Star
and other routines may use R0 internally, they are known to be completely transparent)

