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Lecture #35 – May 5, 2004 

I Feel the Need for Speed 
There are a number of methods for increasing the throughput of a processor.  The 

first and most obvious is to increase the raw clock speed.  While this is a laudable goal, 
all components of the processor chip have to be able to handle the increased speed.  All 
the flip-flops have to keep up with the shorter time periods between clock pulse 
transitions, and all signals have to propagate down the wires to the inputs of the next 
devices before they are needed.  At 11.8 inches per nanosecond, the speed of light 
becomes a serious factor in electronics design.  As processors become faster, they must 
also become smaller.  As devices become smaller, more heat must be dissipated in a 
smaller area as well.  Since we can’t beat the speed of light, we must turn to other ways 
of increasing throughput. 

If you think about the speeds of the various components, you might have a 2 GHz 
processor coupled to 10 ns (nanosecond) memory, for example.  Running the numbers 
tells us that one cycle of the processor takes ½ ns, much faster than the access time of the 
main memory.  While these numbers will be different for different systems, processors 
are generally much faster than their primary memory.  Rather than have a fast processor 
spend most of its time waiting for every memory access, twiddling its thumbs so to 
speak, we can beat the clock by inserting a small amount of cache memory between the 
processor core and primary memory.   

Cache is much faster than primary memory, but speed comes at a price.  Fast 
static memory takes six transistors per cell while slower dynamic memory requires only 
one, so any given chip area can hold only about one-sixth of the number of static cells as 
dynamic cells.  Putting cache onto the processor chip gives the fastest response of all 
since the memory cells operate at the native speed of the processor logic, but the amount 
of memory is even more limited by the available area on the chip not otherwise occupied 
by logic circuits.  The cache on the CPU chip is called the L1 cache. 

When a word is requested from primary memory by the processor, a copy is also 
placed into the cache.  The next time that same word is requested, the processor can get it 
from the cache much faster than it can get it from primary memory.  Since the cache is 
much smaller than primary memory it will quickly fill; placing a new word into the cache 
requires that some other word be discarded.  One common replacement strategy is to 
discard the word used the longest time ago; this is called the LRU or Least Recently Used 
strategy. 

In many memory systems it takes less time to read a contiguous block of words 
all at once than to read one individual word at a time.  In such systems each cache entry 
contains that same number of words.  Requesting one particular word from memory 
causes its corresponding block to be read in and placed into the cache (thus discarding the 
least recently used block).  This makes practical sense as well, since there is a high 
probability that the next requested word (either instruction or data) will be from the same 
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block.  Many caches are split into two sections, one exclusively for instructions and the 
other exclusively for data.  Requesting a word located in the cache is called a cache hit, 
and requesting a word not present is called a cache miss.   

Storing a word into memory spawns off its own set of problems with the cache.  
One approach, called write-through, always updates primary memory on a store 
instruction, as well as updating the appropriate word in the cache.  The cache and primary 
memory are always in agreement, but system performance suffers while waiting for 
primary memory to be updated.  The second approach, called write-back, changes only 
the cache on a store instruction.  Cache and primary memory are no longer in agreement, 
and only when a modified block is to be discarded from the cache is it written back to 
primary memory.  Unmodified blocks do not need to be written back before they are 
discarded.  A special bit associated with each block, called the dirty bit, is set by a store 
instruction to indicate that the block no longer agrees with primary memory and needs to 
be written back. 

If a program spends a large amount of time in a section of code small enough to 
fit entirely into the cache, that section of code will run at the native speed of the 
processor.  As the program progresses from one region of code to another, the cache 
adapts to the changes in program locality.  If the cache is too small for a given section of 
code, however, blocks will be continuously loaded and discarded.  In the worst possible 
case, every memory reference causes a cache miss.  This is a condition known as 
thrashing; performance suffers greatly as a result. 

One approach to increasing the total amount of cache in a system (without 
redesigning the CPU chip) is to insert a second cache between the processor and primary 
memory.  This cache, called the L2 cache, is often significantly larger and slower than 
the L1 cache on the CPU chip, but still much smaller and much faster than primary 
memory.  A miss on the L1 cache will often hit on the L2, and even when the L1 cache is 
thrashing the performance will not suffer as much as if every cache miss had to reference 
primary memory. 

An L2 cache of 128K bytes usually results in a hit rate of roughly 94%; increasing 
to 512K brings that number up to about 96%.  A full gigabyte of cache pushes that to 
around 97%.  It is impossible to reach 100%, as values must be initially fetched and 
eventually stored into main memory at some point.  In the Pentium II™, the processor 
“cartridge” contains both the main CPU chip and a second L2 cache chip. 

In a future lecture we will look at how cache can be implemented using 
associative (content addressable) memory, and how set associative cache memories 
minimize thrashing.  We will also examine super-scalar and pipelining techniques for 
increasing throughput even more. 
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