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Lecture #31 – April 26, 2004 

Bézier Curves and Quadratic Splines 
The topics of this lecture may seem very remote from assembly language.  We 

will be discussing a special set of mathematical curves with some very interesting 
properties.  While the equations for these curves can be created and evaluated using 
traditional mathematical techniques, the curves can be generated quickly and efficiently 
for plotting on a video screen using nothing more than integer additions and division by 
two.  Both of these operations are very fast in assembly language; remember that division 
by two is the same as a right shift by one bit. 

Bézier Curves 

A Bézier Curve is a piecewise, parametric, cubic polynomial.  Polynomial means 
that the equations are nothing more than adds, subtracts, multiplies, and divides of simple 
real numbers.  Cubic means that the equations are of the form at3 + bt2 + ct + d, where t 
is the independent variable.  It also means that the curve will never contain more than two 
inflection points (changes in direction).  Parametric means that the curve is not a 
function in the traditional sense of y = f(x), but instead both x and y are functions of an 
independent variable called the parameter, thus allowing the curve to be placed 
anywhere in the plane.  There is a (different) cubic function for each dimension: x = fx(t), 
and y = fy(t).  If the Bézier curve is in space instead of in the plane then there will be a 
third function of the parameter: z = fz(t).  (This same process extends to any number of 
dimensions.)  Piecewise means that creating a complicated curve requires several simple 
curves be joined end-to-end. 

It takes four points to define a Bézier curve: two end points and two control 
points.  Each control point is associated with one of the end points.  The interesting part 
of the curve starts at one end point, approaches but does not go through its corresponding 
control point, approaches but does not go through the second control point, and ends at 
the other end point.  The curve is tangent at each end to the line between the end points 
and their corresponding control points.  (Joining two curves end-to-end smoothly requires 
that the associated control points be collinear with the common end points.)  The entire 
curve fits inside the smallest convex polygon that encloses the four points, called the 
convex hull of the points.  Here are a couple of pictures of Bézier curves: 
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Given that we know the positions of the four points, p1, p2, p3, and p4, (where p2 is 
the control point for end point p1, and p3 is the control point for end point p4), we can 
generate a set of cubic equations, one for each dimension, which directly represents the 
curve.  For example, if p1x, p2x, p3x, and p4x represent the x values for the four points, then 
the coefficients for the fx(t) function are as follows: 

 
ax = p3x – 3 p2x + 3 p1x – p0x 
bx = 3 p2x – 6 p1x + 3 p0x 
cx = 3 p1x – 3 p0x 
dx = p0x 

The final function for x is fx(t) = axt3 + bxt2 + cxt + dx, and the corresponding 
function for y is fy(t) = ayt3 + byt2 + cyt + dy.  Thus, we can plot the curve by computing 
the value of fx(t) and fy(t) for “enough” successive values of t.  The problems with this 
approach are manifest: the computational load is very heavy, requiring extensive use of 
the floating point portion of the processor, and the selection of the proper step value for t 
is critical.  If the step value for t is too large then the Bézier curve will appear as discrete 
line segments, and if the step value is too small the curve will take too long to compute.  
Depending on the locations of the control points, the step value for t may need to be very 
small in some regions of the curve, but larger elsewhere.  This approach requires a 
measure of adaptability difficult to implement. 

DeCasteljau Algorithm 

The traditional approach is fine as long as you need to evaluate the functions at 
precise values of t to get precise coordinates along the Bézier curve.  For plotting curves 
on screen this is overkill and a completely different approach is needed.  Enter 
DeCasteljau’s algorithm.  This technique can use either floating point or integer pixel 
coordinates for the end points and control points.  If integer coordinates are used all 
computations are integer as well.  The downside is that the routine is highly recursive. 

The basic idea is to subdivide a large Bézier curve into two smaller curves, and 
then repeat recursively until each curve is small enough that it can be plotted on screen as 
a simple line segment (or as a single pixel if the segment collapses far enough).  If the 
recursion is set up properly the curve will be plotted continuously from one end point to 
the other.   

The termination condition of the recursion can be detected in a number of ways.  
The most obvious is when the distance between the end points of any curve fall below 
some threshold.  (It is possible, however, for the end point distance to be below threshold 
and the curve still loop out away a great distance from those end points.)  The distance 
metric can be computed as either a Euclidean distance or as Manhattan distance.  For 
points <x1,y1> and <x2,y2> the Euclidean distance is the square root of the sum of the 
squares of the differences in x and in y, and the Manhattan distance is the sum of absolute 
values of the differences in x and in y.   
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Euclidean distance gets a “true distance” and usually works well with floating 
point computations, but the square root is expensive in its execution time.  The 
Manhattan distance (the distance between any two street corners in Manhattan, where 
you cannot go diagonally through buildings) is easy to compute in both integer and 
floating point. 

When the distance has been computed and found to be above threshold, the 
DeCasteljau algorithm must divide the Bézier curve into two smaller Bézier curves.  This 
process is shown in the following diagram: 

 

Averaging two points to find the mid point requires averaging the x values and the 
y values independently.  For points <x1,y1> and <x2,y2> the mid point is computed to be 
at <(x2+x1)÷2, (y2+y1)÷2>.   

Page 3 of 5 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

The following ARM assembly code shows how to average two variables in both 
single-precision floating point format and in integer format: 
 
  Floating Point   Integer 
  LDFS F0,X2   LDR R0,X2 
  LDFS F1,X1   LDR R1,X1 
  ADFS F0,F0,F1   ADD R0,R0,R1 
  DVFS F0,F0,#2   MOV R0,R0,LSR #1 

For each recursive call the activation record needs to contain local variable space 
for the six computed mid points, as well as for the parameters.  In a high-level language 
format, the general form of the DeCasteljau algorithm can be expressed as follows: 
 
 Procedure DeCasteljau (P0,P1,P2,P3:Point) 
 
     Var P01   : Point { Mid point from Step 1 } 
     P12   : Point { Mid point from Step 1 } 
     P23   : Point { Mid point from Step 1 } 
     P012  : Point { Mid point from Step 2 } 
     P123  : Point { Mid point from Step 2 } 
     P0123 : Point { Mid point from Step 3 } 
 
 Begin 
  If Distance(P0,P3) < Threshold Then 
   Plot_Line (P0, P3) 
  Else 
   Begin 
    P01   := (P0   + P1  ) / 2 
    P12   := (P1   + P2  ) / 2 
    P23   := (P2   + P3  ) / 2 
    P012  := (P01  + P12 ) / 2 
    P123  := (P12  + P23 ) / 2 
    P0123 := (P012 + P123) / 2 
    DeCasteljau (P0, P01, P012, P0123) 
    DeCasteljau (P0123, P123, P23, P3) 
   End 
 End 

If Manhattan distance calculations are used, you can see from the pseudocode 
above that the entire subroutine can be performed using nothing but integer instructions.  
The trickiest part of coding this subroutine in assembly language is managing the stack; 
each activation record will have four points passed in as value parameters and six points 
as local variables.  In the plane each point has an x and a y coordinate, so there are twenty 
integers (80 bytes) on the stack in addition to any registers that need to be saved for 
purposes of transparency. 
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Quadratic Splines 

A similar but simpler curve is the quadratic spline, which uses quadratic 
parametric polynomials instead of cubic polynomials.  As with the Bézier curve the 
quadratic spline curve is tangent to control lines between each end points and a control 
point, but in this case there is only a single shared control point.  A recursive form of the 
DeCasteljau algorithm exists for the spline, as shown below: 

 

Why These Curves are Important 

Bézier curves were developed (by Pierre Bézier) to create smoothly changing 
shapes for the automotive industry.  Bézier curves and quadratic splines are used in 
describing the outlines of typefaces in Microsoft Windows, which can be mathematically 
scaled to any size without changing shape.  In plotting circles on a graphics screen it is 
curiously often faster to plot two cubic Bézier curves in complementary positions than it 
is to plot one quadratic circle, although the result is not quite circular.  (There are also 
some very fast circle plotting routines that don’t use Bézier curves; there are a very large 
number of alternative drawing routines!)  Of course, the most important use of Bézier 
curves is in the “mystify” screen saver in Windows! 
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