
CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

Lecture #27 – April 16, 2004 

More Multiplication 
Direct Hardware Multiplication 

As we’ve seen before, the process of multiplication generates a series of partial 
products which are then added together.  Performing these actions directly in hardware 
can make for complicated hardware.  While there are parallel hardware adders, they use 
trees of sophisticated carry-look-ahead adders.  We will next look at some alternative 
approaches to multiplication that do not require sophisticated hardware. 

 

Multiplication by Table-Lookup 

Often overlooked by many programmers is a purely software approach to 
multiplication, as well as other more complicated functions.  The approach is called table 
lookup, which is extremely fast but achieves its high speed at the expense of using a lot 
of memory.  In essence, all the answers are pre-computed and stored in a table, and the 
“computation” process uses the input parameters to generate the address of the cell 
containing the right answer.  In general, functions using table lookup run in O(1), or 
constant time. 

On a processor such as the 6502, which does not contain a multiplication 
instruction, the table lookup approach is much faster than a general-purpose software 
multiplication subroutine.  Unfortunately, the 6502 has extremely limited memory, so 
table lookup must be reserved for those problems where a small number of numbers must 
be multiplied together as fast as possible.  Even on architectures which do support 
multiplication natively, the table lookup approach may be fast enough relative to the 
speed of the general-purpose multiplication instruction to justify their use, as long as the 
size of the table is not especially large. 

Multiplying two 3-bit numbers (between 0 and 7) requires a table of 64 entries, 
containing all combinations of products between 0×0=0 and 7×7=49.  We are pretending 
that the ARM chip has no built-in multiplication instruction, and will set up this problem 

Page 1 of 4 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

with two variables Op1 and Op2 containing the numbers we wish to multiply.  Assume 
that Op1 and Op2 are always clipped to the correct range (i.e., only the rightmost three 
bits may contain non zero values).  Since only three bits are valid, we need only logically 
OR one value with the other shifted left by three bits, forming a six bit offset into the 
table.  As you can see from the code, the multiplication proceeds in constant time: 
 
  LDR R0,Op1  R0 = 000…000000000xxx 
  LDR R1,Op2  R1 = 000…000000000yyy 
  MOV R2,R0,LSL #3 R2 = 000…000000xxx000 
  ORR R2,R2,R1   R2 = 000…000000xxxyyy 
  ADR R5,Table 
  LDR Rx,[R5,R2,LSL #2] 
  … 
 
TABLE DCD 0   Table[0] 
  DCD …   Table[1] 
  DCD …   Table[2] 
  DCD …   Table[3] 
  … 
  DCD …   Table[60] 
  DCD …   Table[61] 
  DCD …   Table[62] 
  DCD 49   Table[63] 

Table lookup is a very nice mechanism for other tasks besides multiplication.  
Trigonometric functions SINE and COSINE are particularly well-suited for table lookup, 
as long as the input arguments are integer degrees.  In this case, you need only 91 table 
entries to hold the sine values of all angles between 0° and 90°.  Through reflection and 
rotation this same table can be used to extract the sine and the cosine of all angles 
between 0° and 360°.  (The most obvious data type for a table of sine values is floating 
point, but I have used scaled integers as well.) 

Multiplication by Shift / Add 

Continuing the pretense that our processor lacks a hardware multiplication 
instruction, we next look at a general-purpose software technique.  When two 32-bit 
numbers are multiplied together the result is 64 bits in length, so we will need two 
registers to hold the result.  As is turns out we will need to extend one of the operands to 
64 bits as well.  In a standard multiplication problem this will be the “top” operand. 

The process is to shift the “bottom” operand to the right so that its rightmost bit 
goes into the carry bit.  If the carry bit is set, then it would generate a partial product with 
the top operand; the (64-bit) top operand is added to the 64-bit result when that happens.  
If the carry bit was 0, the partial product will also be zero, so no addition is necessary.  
After the shift and test, the top operand is shifted left (64-bits) so that it is aligned with 
the correct position in the result if an addition is necessary.  This process repeats until the 

Page 2 of 4 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

bottom operand is zero (which may take as many as 32 passes through the loop).  In a 
high-level language this would be accomplished by the following pseudocode: 

 
Total := 0 
Repeat 
 C   := Op2 Mod 2 
 Op2 := Op2 Div 2 
 If C = 1 Then Total := Total + Op1 
 Op1 := Op1 * 2 
Until Op2 = 0 

The Mod (remainder) and Div (integer divide) instructions are implemented in 
assembly language as a single right-shift, into the carry, of the register containing Op2, as 
in MOVS R2,R2,LSR #1 (remember to set the flags in order to get the rightmost bit 
into the carry).  Multiplying Op1 by 2 is a simple left-shift.  If Op1 is in R0 and Op2 is in 
R2, then we reserve R1 for the upper half of the 64-bit extended version of Op1, and 
registers R4 and R5 for the 64-bit result, as shown below: 

 

The complete ARM assembly code for this process (roughly equivalent to the 
UMULL instruction) is shown below: 
 
  MOV R4,#0 
  MOV R5,#0 
  MOV R1,#0 
LOOP      Repeat 
  MOVS R2,R2,LSR #1  R2 := R2 Div 2, C=remain 
  BCC NextBit   If C=1 Then 
  ADDS R4,R4,R0    64-Bit Add (low) 
  ADC R5,R5,R1    64-Bit Add (high) 
NextBit MOVS R0,R0,LSL #1  64-Bit LSL (low) 
  ADC R1,R1,R1   64-Bit LSL (high) 
  CMP R2,#0  Until R2 = 0 
  BNE LOOP 

This software process is quite easy to implement in hardware, but because it is 
serial multiplication it is much slower than the direct parallel hardware approaches we 
have examined earlier.  Modern processors use much faster hardware approaches, but at a 
corresponding increase in circuit complexity. 

Page 3 of 4 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

Page 4 of 4 

Extended Precision Arithmetic 

Techniques similar to those used in the software multiplication routine are also 
used to create extended precision arithmetic routines.  In extended precision, software 
routines are written to create synthetic data types not available natively on the processor.  
For example, 64-bit or larger integer arithmetic routines can be created using 32-bit 
registers (on the ARM or 386/486/Pentium), 16-bit registers (on the 8088), or 8-bit 
registers (on the 6502).  Indeed, on small processors such as the 6502 it is often critical to 
create such routines.   

In each of the following code fragments, contiguous memory tables have been set 
up for the Op1, Op2, and Result variables.  Each code fragment adds Op1 to Op2 and 
places the sum into Result.  Each variable is three storage locations long, using the native 
size of the processor; thus the ARM variables are three 32-bit locations for a total of 96 
bits, the 8088 variables are 48 bits, and the 6502 variables are 24 bits. 

 
96-Bit ARM  48-Bit 8088  24-Bit 6502 
LDR R0,Op1  MOV AX,Op1  CLC 
LDR R1,Op2  ADD AX,Op2  LDA Op1 
ADDS R0,R0,R1  MOV Result,AX  ADC Op2 
STR R0,Result  MOV AX,Op1+2  STA Result 
LDR R0,Op1+4  ADC AX,Op2+2  LDA Op1+1 
LDR R1,Op2+4  MOV Result+2,AX ADC Op2+1 
ADCS R0,R0,R1  MOV AX,Op1+4  STA Result+1 
STR R0,Result+4 ADC AX,Op2+4  LDA Op1+2 
LDR R0,Op1+8  MOV Result+4,AX ADC Op2+2 
LDR R1,Op2+8      STA Result+2 
ADCS R0,R0,R1   
STR R0,Result+8  

Subtraction is nearly identical.  Multiplication is harder, but can be implemented 
using a combination of techniques that we have already covered.  Division is much more 
difficult.  It should be pretty obvious that there will be more code necessary for the 6502 
than for the ARM to compute sums of equivalent lengths.  It should also be obvious that 
the code is fairly regular, and can be implemented with fairly short loops. 

 


	Lecture #27 – April 16, 2004
	More Multiplication
	
	Direct Hardware Multiplication
	Multiplication by Table-Lookup
	Multiplication by Shift / Add
	Extended Precision Arithmetic



