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Lecture #24 – April 7, 2004 

More about Flip-Flops 
From the previous lecture we use the NAND-gate based flip-flop as a starting 

point.  This form, shown below, is called a set-reset flip-flop.  Normally, the inputs are at 
their resting state where both have the value 1.  Bringing the top input line to 0 forces the 
top output to 1 (and the bottom output to 0), thus setting the flip-flop.  Bringing the 
bottom input line to 0 forces the bottom output to 1 (and the top output to 0), thus 
resetting the flip-flop.  The inputs are labeled Set and Reset, with a bar over top to 
indicate that they are active-when-0 instead of active-when-1.  The outputs are 
traditionally called Q and Q-bar (or Not-Q), where Q-bar is a Q with a line over top.  
Under normal circumstances the outputs Q and Q-bar always have opposite values.  (The 
one case where they do not is when both Set and Reset are brought to 0; both will have 
output values of 1, but this is an unstable condition.  The flip-flop will settle into one of 
the two legal states depending on which input line goes to 1 first.  If both input lines go 
from 0 to 1 simultaneously, minute differences in the manufacturing of the gates will 
cause one to be slightly faster than the other and the flip-flop generally will settle into its 
“preferred” state.) 

  

By placing a NAND-gate in front of each input of the set-reset flip-flop, we can 
control whether or not new values get written into the flip-flop.  The control line common 
to the new NAND-gates is normally 0, which forces their outputs to 1 (the resting state of 
the NAND-based set-reset flip-flop).  When the control line is brought to 1, the new 
NAND-gates act like NOT-gates, and whichever of their data inputs is 1 forces the 
corresponding input of the flip-flop to 0, setting or resetting it appropriately. 

 

Now, if we take two of these new gated flip-flop modules and connect the outputs 
of the first to the inputs of the second, we have a composite structure called a master-
slave flip-flop.  The first stage is the master, and its control line determines whether new 
values are written into its flip-flop.  The second stage is the slave, and its control line 
determines whether the values from the master are copied into its flip-flop.  By making 
the control lines of the two stages operate alternately, we can isolate the action of 

Page 1 of 4 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

capturing an input value from the action of storing and displaying it.  This is best done by 
connecting the two control lines with an inverter (another name for a NOT-gate), and 
calling the new control structure the clock line.  When the clock is low (equal to 0), the 
input stage to the master is turned off, and no changes at the data input lines (now called J 
and K) affect the master flip-flop.  Whatever happens to be in the master flip-flop is 
copied to the slave flip-flop.  When the clock goes high (equal to 1), the slave locks in its 
current value, and the master reads its new value from the input lines.  Bringing the clock 
back down to 0 locks in the last value from the input lines into the master and copies it to 
the slave.  Since the J and K lines must contain opposite values, we can enforce this 
condition through an extra inverter and call the new input the D line (D for Data).  Also, 
an extra set of inputs on the slave flip-flop allows us to set or reset the output as desired.  
This complete new structure is shown below. 

 

All the time that the clock is high, any changes to the D line are immediately 
written into the master flip-flop (but the slave is locked).  This is called a level-sensitive 
or level-triggered flip-flop.  This particular implementation is actually pretty bad.  In this 
design there is a potential race condition, which means that correct operation is 
dependent on timing, the speed of the clock pulses, and the propagation delay of the 
individual gates (how fast the gates operate, usually on the order of nanoseconds).  For 
example, when the clock line goes low (from 1 to 0) the control NAND-gates in the 
master section must shut off before the control NAND-gates in the slave are activated, 
otherwise last (nano-)second changes in the data line might propagate all the way to the 
slave, causing a noisy output.  The NOT-gate in the clock line probably introduces 
enough delay to insure proper operation. 

A variation is one in which the act of bringing the clock line high (from 0 to 1) 
isolates the inputs from the master in a such a way that the isolation circuits themselves 
determine when it is safe to update the slave, and then do so immediately.  Thus, the 
input value on the D line is copied safely to the Q output (and its complement to Q-bar) 
within a few nanoseconds of whenever the clock line is brought high.  This variation is 
called an edge-triggered flip-flop, which is largely immune from race conditions.   
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From now on we will consider D-type flip-flops to be of the edge-triggered 
variety.  In the symbol for a D flip-flop shown below the circle on top represents the Set 
input and the circle on the bottom represents the Reset input.  Those inputs are shown as 
circles to indicate that they are active-low, resting normally at 1 but going to 0 to perform 
their respective functions. 

 

Now that we know how D flip-flops work we can consider circuits that make use 
of them.  The simplest form is to simply connect a bunch of them together as shown 
below; where the Q output of one drives the D input of the next: 

 

On each clock pulse, every flip-flop updates its value from the flip-flop to its left, 
all at the same time.  Any value present at the D line of the leftmost flip-flop will move 
through the device, called a shift register, at a rate of one flip-flop per clock pulse.  Any 
value in the rightmost flip-flop is lost if no action is taken otherwise.  By connecting the 
rightmost Q output back around to the leftmost D input, any values in the shift register 
will simply recirculate.  For an N-bit shift register, the initial pattern is rotated back to its 
original position after every N clock pulses.  Clocking in N–1 pulses is equivalent to a 
rotation in the opposite direction.  Shift registers have numerous uses, including general 
purpose arithmetic registers, pseudorandom number generators, and many more. 

By connecting the Q-bar output of a flip-flop back to its own D input, the outputs 
alternate after every clock pulse.  For example, if Q=1, then Q-bar=0 and the next clock 
pulse will copy the 0 into Q.  If Q=0, then Q-bar=1 and the next clock pulse will copy the 
1 into Q.  Thus, the outputs go from 0 to 1 and back to 0 again at a rate exactly half of the 
input clock rate.  Stringing a bunch of these flip-flops together so that the Q output of one 
drives the clock line of the next creates a divider chain, where the first flip-flop’s output 
is half the frequency of the clock, the second’s output is half that rate or a quarter of the 
frequency of the clock, the third’s output is one eighth of the clock, and so on.  More 
importantly, looking at the binary outputs of the flip-flops in reverse order (the circuit is 
mirrored so that Bit 0 is on the right) reveals that the device is a binary counter.  It starts 
at zero, and then every clock pulse increases its value by 1.  For N bits, the highest value 
(unsigned, of course) is 2N-1.  One more clock pulse brings the counter back to zero.  
This is essentially the heart of the program counter on a computer; when we add the 
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extra hardware necessary to allow placement of any arbitrary value into the counter we 
can perform branch instructions. 

 

The configuration just described, where the Q-bar output feeds back into the D 
input, is so common that it has its own symbol.  This symbol, shown below, is called a 
triggered, toggle, or T flip-flop.  The T input is just a relabeling of the clock input in the 
D flip-flop, but it indicates that a clock pulse on the T line will cause the outputs of the 
flip-flop to switch, or toggle, from one state to the opposite state. 

 

The counter drawn earlier with D flip-flops is shown below using T flip-flops 
instead.  You can see how much simpler the circuit appears in this form. 

 

As we increase the complexity of our circuits it is necessary to increase our level 
of abstraction correspondingly.  In future lectures we won’t worry so much about the 
details of how many NAND-gates are in a D flip-flop, how a shift register works, or how 
T flip-flops toggle their values every clock pulse, but instead we will simply say “here is 
an N-bit shift register” or “assume an N-bit counter” and proceed from there.  This is the 
only way we can manage devices of such complexity without suffering from information 
overload. 
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