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Lecture #23 – April 5, 2004 

Flip-Flops 
Up to this point we have looked at circuits without feedback, where the outputs on 

the right are strictly a function of the inputs on the left.  In this lecture we will look at 
devices which do have feedback.  These devices provide memory functions for 
computers, particularly to the central processing unit in the form of registers.  We will 
also begin our look at mechanisms for creating main memory (RAM) devices. 

For the first example, take two NOT-gates and cross-couple the output of each 
one to the input of the other.  The resulting circuit has no external inputs, so we have to 
imagine that values “somehow” get established somewhere.  If we assume that the input 
to the top NOT-gate is 0, then its output is 1, which goes to the input of the bottom NOT-
gate.  The output of the bottom NOT-gate is 0, feeding back to the input of the top, which 
agrees with our initial assumption.  This configuration is stable, as long as the power 
holds.  If we make the opposite assumption, and set the top input to 1, we find that this is 
also a stable state.  Such a device is called bistable because it has two stable states.  The 
figure below shows the circuit in each of its two stable states.  By twisting the bottom 
NOT-gate around so that it faces the “normal” left-to-right direction of signal flow we see 
that the feedback loop now crosses over itself. 

 

As stated earlier, the device as it stands has no inputs, so it cannot be used in any 
practical circumstance.  The NOT-gates can acquire more inputs by turning them into 
either NAND-gates or NOR-gates.  For the NAND-gate version, the “resting state” is 
when the inputs are equal to 1, in which case the NAND-gates act just like the earlier 
NOT-gates.  Setting an input line to 0 forces the corresponding output to 1; this output 
then feeds around to the other NAND-gate, forcing its output to 0.  As soon as this 0 
feeds back to the first NAND-gate the circuit is stable and the input line can return to its 
resting state.  Similarly, the resting state for the NOR-gate version is when its inputs are 
equal to 0.  Setting an input to 1 forces the corresponding output to 0 and the other output 
to 1.  The feedback loop works in the same manner as the NAND-gate version.  Both 
versions are shown below: 
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These circuits are called flip-flops because they “flip” to one state and “flop” to 
the other.  Flip-flops are also called bistable multivibrators (there are also astable 
multivibrators and monostable multivibrators, which we will discuss at a later time).  
Flip-flops form the basic framework of memory and register bits. 

In modern electronic circuitry we don’t use relays, although it is fairly easy to do 
so.  The circuit shown below is a relay version of the NAND-gate flip-flop. 

 

Modern circuits use MOS transistors (Metal Oxide Semiconductor), which are 
microscopic three-terminal semiconductor switching elements.  Two basic types exist; 
one type “closes its switch” and allows current to flow between two of the terminals 
when the third terminal sees a positive voltage, and the other type closes its switch when 
the third terminal sees a negative voltage.  When one of each type is used together, the 
transistors form a complementary pair, or CMOS (Complementary Metal Oxide 
Semiconductors).  A characteristic of gates built from CMOS devices is that they use 
nearly no power except when they are changing state from 0 to 1 or from 1 to 0.  The 
faster they switch the more power they use. 

A memory cell with cross-coupled gates and appropriate input-output lines 
requires six such transistors.  Memory cells built this way are called static because they 
retain their contents as long as power is applied, but are also called volatile because they 
“lose their mind” when power is removed.  Static memory is very fast to read from and 
write to, but it is expensive in large quantities because of the number of transistors per 
cell.  Typically, static memory is used in registers and caches where a small amount of 
very fast memory is necessary, but it is not used in primary memory. 

Another technology which is used in primary memory is called dynamic memory.  
Dynamic memory requires only one transistor and a small capacitor per memory cell, so 
it is significantly smaller in size and cheaper than static memory.  Bit values are stored as 
charges in the capacitor; a large charge for a 1 and little or no charge for a 0.  The 
transistor allows current to pass only when reading from or writing to the capacitor; when 
the transistor is turned off the capacitor is isolated from the rest of the circuitry and 
(theoretically) retains its charge.  Unfortunately, the capacitor is so small that its charge 
leaks away in a few milliseconds.  The value of every capacitor in the memory system 
must be read out and the appropriate charge replaced before the charges leak away to the 
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point where the data values cannot be recovered.  This is why this type of memory is 
called dynamic; it must be monitored and maintained continuously or it won’t work.  In 
the original IBM PC dynamic memory was refreshed under software control; every few 
milliseconds the PC would have to stop what it was doing to go refresh the memory.  The 
interval between refreshes could be lengthened to give a larger proportion of time to 
application programs, and thus improve performance by a small amount, but if the 
interval was lengthened too much then the charges would leak away and the system 
crashed.  Today, dynamic memory chips contain built-in refresh circuitry, so the issue is 
mostly moot. 

Regardless of the type of memory used, static or dynamic, each memory cell has a 
word line which selects the cell, and a bit line for writing a new value into the cell or 
reading out its value.  (Cells of static memory require both a bit line and its complement, 
but dynamic memory cells require only the bit line.)  All memory cells that are part of the 
same location in memory (byte, word, double word, whatever) are connected to the same 
word line so that they are all activated at the same time.  All corresponding bits from 
different words are connected to the same bit lines; that is, all bit 0s are connected 
together, all bit 1s are connected together, etc.  This forms a two-dimensional grid of 
memory cells, requiring that at most one word line be activated at any one time. 

Insuring that only one word is activated at any time requires a circuit called a 
demultiplexer, which has N input lines and 2N output lines.  The basic demultiplexer 
requires 2N AND-gates, one for every output, and each with N inputs.  All of the inputs 
are available to the AND-gates, as are the complements of all inputs.  Each AND-gate 
taps into a unique combination of either an input line or its complement, as shown below: 
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The example shown has three inputs, so it must have 23=8 outputs, numbered 
from 0 to 7.  Every binary pattern activates exactly one of the AND-gates.  Every AND-
gate in the example is inscribed with the number that corresponds to its binary trigger 
value.  Place any binary value on the input lines and trace the signal flow through the 
circuit to prove to yourself that only a single AND-gate is ever activated. 

The following diagram shows an 8×8 grid of memory cells, corresponding to a 
random access memory system containing eight bytes of RAM.  The address of the 
desired byte is placed onto the input lines of the demultiplexer, which activates the word 
line to the correct byte in the memory grid.  Placing any new value on the bit lines writes 
those values into the selected byte.  In this case the memory bits are dynamic, so 
activating a word line causes its transistors to connect its corresponding capacitor to the 
bit lines; placing values onto the bit lines set the charges in only those selected capacitors, 
and reading out the byte means measuring the charges placed onto the bit lines by those 
same capacitors. 

 

If you try to generalize this mechanism, you’ll soon come to the realization that a 
demultiplexer would require over four billion 32-input AND-gates to fully populate a 32-
bit address space with memory.  This is impractical for a number of reasons, not the least 
of which is that no single device can drive four billion inputs.  Instead, we can get by 
with a much smaller demultiplexer if each word line activates many more bits than are 
required by any single storage location, and then a special selection circuit (called a 
multiplexer) picks out the desired portion of what was actually fetched.  In our example 
we have eight words of eight bits per word; we could instead have had four words of 16 
bits per word, and then picked the desired 8-bit byte out of the 16-bits that were fetched. 

For any specified memory size with an N-bit address, we can have a complete 2N 
demultiplexer and no multiplexer, no demultiplexer and a 2N multiplexer, or something in 
between.  For any such system there is a “sweet spot” which minimizes the overall 
amount of required hardware.  We will look at such systems in a future lecture. 
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