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Lecture #21 – March 31, 2004 

Introduction to Gates and Circuits 
To this point we have looked at computers strictly from the perspective of 

assembly language programming.  While it is possible to go a great distance with just 
software tools, the best understanding of the underlying models can only be achieved 
through study of the hardware components and associated computer architecture. 

For example, we have written assembly language programs that use AND and OR 
instructions.  AND instructions are used to clear bits in a word; for any value of X the bit 
expression (0 AND X) returns 0, and the bit expression (1 AND X) returns X.  
Similarly, inclusive-OR instructions are used to set various bits in a word; for any value 
of X the bit expression (0 OR X) returns X, and the bit expression (1 OR X) returns 
1.  For completeness, exclusive-OR instructions (denoted as either XOR or EOR, 
depending on the processor) are used to complement the bits in a word; the bit expression 
(0 XOR X) returns X, just like inclusive-OR, but the bit expression (1 XOR X) 
returns the 1’s complement of X. 

Rather than simply leave these functions to software, and trust that they always do 
what they are supposed to do, we can implement them in hardware.  For example, we can 
easily build test circuits for AND and OR with no more than a battery, a light bulb (of the 
appropriate voltage), a handful of switches, and some wire.  The following diagram 
shows the schematics for these two circuits. 

 

Note that in the AND circuit both switches must be closed for the light bulb to 
light up, and if any switch is open the light bulb is off.  In the OR circuit the situation is 
reversed: any switch may be closed for the light bulb to light up, and all must be open for 
the light bulb to be off.  This relationship is codified in DeMorgan’s Theorems, which 
we will address at a later time.  In the AND circuit it is pretty easy to add a third switch in 
series with the other two, and in the OR circuit it is just as easy to add a third switch in 
parallel.  Any number of switches can be added to either circuit.   

We can consider “switch closed” to mean True and “switch open” to mean False; 
similarly “light on” means True and “light off” means False.  In binary, True maps onto 
the value 1, and False maps onto 0.  A truth table shows all of the behaviors for a circuit 
in terms of either True and False or 1 and 0; the two notations are identical. 
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For example, truth tables for AND and OR circuits with two inputs will have four 
behaviors that must be cataloged.  The two inputs may be both False, one False and one 
True (in two different ways), or both True.  In general, a circuit with N inputs is 
described by a truth table with 2N rows (behaviors).  Each time an input is added the 
number of behaviors doubles: all of the previous behaviors with the new input False, and 
all of the previous behaviors with the new input True.  For two inputs labeled A and B the 
AND and OR truth tables are as follows (using both notations): 

 
A   B  | AND OR A   B  | AND OR 
F   F  |  F   F 0   0  |  0   0 
F   T  |  F   T 0   1  |  0   1 
T   F  |  F   T 1   0  |  0   1 
T   T  |  T   T 1   1  |  1   1 

For three inputs there will be eight rows in the truth table; for AND the only True 
output will be the last one, and for OR the only False output will be the first.  The pattern 
is the same no matter how many inputs are present.  The general rules for these two 
functions, regardless of the number of inputs, are: 

AND: The output is True if all inputs are True, 
The output is False if any input is False. 

OR: The output is False if all inputs are False, 
The output is True if any input is True. 

One more function is NOT, which always has a single input.  The output is always 
the inverse of the input; if the input is 0 the output is not 0 (it’s 1), and if the input is 1 the 
output is not 1 (it’s 0).  The general rule is: 

NOT: The output is False if the input is True, 
The output is True if the input is False. 

As it turns out, there are any number of ways we can build hardware to perform 
the AND, OR, and NOT functions (and others).  The major differences between any two 
hardware technologies are in size, speed, reliability, and cost, but the underlying 
mathematics remain invariant.  We can abstract out the mathematical parts so that the 
technology doesn’t matter; a gate therefore is a mathematical abstraction for a 
mechanical device that implements the function of a truth table.  The standard shapes for 
the three most common gate types are as follows, each with inputs on the left and the 
output on the right: 
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The OR and NOT gates can be combined to form a NOR gate, and the AND and 
NOT gates can be combined to form a NAND gate.  All of these gates are shown below, 
along with their respective truth tables. 

 

Gates have little use in and of themselves, but they can be combined to form 
powerful circuits.  One of the most useful is shown below.  In order to understand the 
operation of a device such as this you must trace it for each possible behavior.  This 
means applying every possible set of values to the inputs, letting those values flow 
through the circuit (as each gate generates its appropriate outputs those values flow on to 
the inputs of the next gate), and observing the final outputs.  Wherever two lines cross 
with an “overpass” or “croquet wicket” there is no signal communication from one line to 
the other.  Where lines join with a dot a connection exists, and a value asserted at one 
point on the line is seen everywhere along that line, essentially simultaneously. 

 

This circuit adds two bits together in binary, generating a sum and a carry.  
Treating the carry-sum combination as a 2-bit binary number, tracing the circuit for all 
possible behaviors reveals that 0+0=00, 0+1=01, 1+0=01, and 1+1=10.  This device is 
called a half-adder because it cannot also add in a carry from a lower-order bit, and so 
does only about half of what is needed in a general purpose binary adding machine. 
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This circuit occurs so frequently that it has its own diagram.  Indeed, this is 
extremely common in circuit design; as circuit modules are designed they are abstracted 
into “black boxes” that can be used in subsequent designs without worrying about the 
implementation details.  The block for a half-adder is shown below: 

 

To create a full-adder, or a device that can add together three bits (two operand 
bits and a carry from a lower stage), you need two half-adders plus an extra OR gate to 
“glue” them together.  As before, that combination occurs so frequently that it has its own 
abstract symbol, as shown below: 

 

 

With enough full-adders you can build a general purpose ripple-carry binary 
adder.  Adding two N-bit operands requires N full-adders.  Each full-adder in the chain 
adds together a bit from each operand and the carry-out from the full-adder on the right, 
producing a sum bit and a carry to the next full adder on the left.  While this is a general 
and extensible design it suffers from speed problems, as it is possible for a carry to ripple 
all the way from the right-most bit to the left-most bit.  Modern adder designs use 
techniques to reduce or eliminate carry-ripple. 
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The following circuit shows a ripple-carry adder.  Each full-adder contains two 
half-adders and an OR gate, and each half-adder contains two AND gates, an OR gate, and 
a NOT gate.  Multiply those counts by the number of bits in the adder and you can get a 
feeling for the underlying complexity of the circuit (and this isn’t a particularly 
complicated circuit). 

 

 

Questions that we will address in the next lecture include: 

1. What do we do with the carry in and carry out lines? 

2. How can we use the adder to also perform two’s-complement subtraction? 
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