
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #18 – March 24, 2004

Parameters and the Stack
In this lecture we are going to examine the use of the stack as a general

mechanism for passing parameters in to and out of a subroutine. In the next lecture we
will describe how this approach maps onto parameter mechanisms used by high-level
languages.

In the most basic form, we want to push parameters onto the stack before calling a
subroutine, and we want to pop those parameters off of the stack after the subroutine
returns to its calling point. This is illustrated by the following pseudocode:

Push Param1
Push Param2
Call Sub
Pop Param2
Pop Param1

In ARM assembly language, the equivalent code is as follows:

 LDR R0,Param1
 STR R0,[SP,#-4]! Push Param1
 LDR R0,Param2
 STR R0,[SP,#-4]! Push Param2
 BL SUB Call Sub
 LDR R0,[SP],#4 Pop Param2
 STR R0,Param2
 LDR R0,[SP],#4 Pop Param1
 STR R0,Param1

In the ARM every subroutine is responsible for saving and restoring its own
return address (unlike the 6502 and 8088, which push the return address on the stack as
an automatic side effect of the call and pop it upon return). In addition, every properly
written subroutine must save and restore any affected registers in order to prevent
unintended side effects in the calling routine. In earlier examples enforcing transparency
was done by saving the registers to fixed locations in memory; an effective technique but
one that does not lend itself to recursion. Here we will save the registers, including the
link register containing the return address, to the stack.

For our current example we will assume that the only register that needs saving,
other than the link register, is R0. Then, by the time we are ready to “do useful work” in
the subroutine the stack contains four items: Param1, Param2, the return address, and
the saved value of R0. The stack pointer SP points at the memory word containing R0
(i.e., the “last full” byte of the stack and not the “first empty” byte).

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

At this point the stack looks as follows:

The body of the subroutine can now access the parameters relative to the current
value of the stack pointer. Parameter Param1 is at SP+12, and Param2 is at SP+8,
and those offsets are used in the appropriate LDR and STR instructions. Suppose, for
example, that the purpose of the subroutine is to place into Param2 the value of
Param1 times 5. The complete subroutine code is as follows:

SUB STR LR,[SP,#-4]! Push LR

 STR R0,[SP,#-4]! Push R0
 LDR R0,[SP,#12] R0 := Param1
 ADD R0,R0,R0,LSL #2 R0 := R0 * 5
 STR R0,[SP,#8] Param2 := R0
 LDR R0,[SP],#4 Pop R0
 LDR PC,[SP],#4 Return

This subroutine is too simple to warrant use of the stack in this manner, of course,
but it is useful to illustrate the advantages and pitfalls of the technique. The advantages
should be obvious: no explicit memory allocations are necessary, and so the subroutine
could be potentially recursive. Unfortunately, there are two problems that we need to
address. The first problem is that the offsets are meaningless numbers; it is difficult to
remember if SP+12 refers to Param1 or Param2. By using EQU directives we can get
around this problem, and use symbols anywhere the numeric offsets would be used. If it
becomes necessary to add more items to the stack frame and thereby change the values of
the offsets, only the symbols need be redefined. This approach is shown as follows:

Param1 EQU 12
Param2 EQU 8

SUB STR LR,[SP,#-4]! Push LR

 STR R0,[SP,#-4]! Push R0
 LDR R0,[SP,Param1] R0 := Param1
 ADD R0,R0,R0,LSL #2 R0 := R0 * 5
 STR R0,[SP,Param2] Param2 := R0
 LDR R0,[SP],#4 Pop R0
 LDR PC,[SP],#4 Return

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The second problem is worse. Using the stack pointer SP as a base register to
index into the stack array works well only as long as the stack pointer doesn’t change
within the body of the subroutine. If Param1 is at SP+12 at the start of the “do useful
work” section, pushing a new word onto the stack places Param1 at SP+16. For every
new word pushed the offset increases by another four bytes. The use of symbols defined
by EQU directives is now completely invalid (the symbols no longer have the correct
values), and debugging a program where the offsets change is nearly impossible.

What we need is an approach where the stack contents are allowed to change, but
the base address of the array containing the parameters does not. We must use one more
register. On the ARM, the register to use is R12, also called the IP register. Once
everything goes onto the stack (including the old value of the IP register), the IP is set
to the final value of the stack pointer SP. Now the subroutine can push any number of
new words onto the stack, changing SP, and the parameters are always referenced by the
same offsets relative to IP.

In the following subroutine, the return address, R0, and the IP registers are all
pushed onto the stack. (Any local variables needed by the subroutine are allocated on the
stack at this time as well.) Once the MOV IP,SP instruction has been executed the stack
is free to change as needed.

SUB STR LR,[SP,#-4]! Push LR

STR IP,[SP,#-4]! Push IP
STR R0,[SP,#-4]! Push R0
MOV IP,SP IP := SP
 Param1 is always at IP+16
 Param2 is always at IP+12
LDR R0,[SP],#4 Pop R0
LDR IP,[SP],#4 Pop IP
LDR PC,[SP],#4 Return

Here is the configuration of the stack in the body of the subroutine:

Any new pushes go on top of the stack, but IP stays fixed for the running life of
the subroutine.

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

As mentioned earlier, we may need to reserve space on the stack for variables
local to the subroutine. Suppose in our subroutine we need to save both R0 and R1, and
reserve three words (12 bytes) for local storage. Those values need not be initialized to
any specific value, so reserving 12 bytes is as easy as subtracting 12 bytes from the stack
pointer. Deallocating those bytes at the end of the subroutine requires adding 12 back to
the stack pointer.

SUB STR LR,[SP,#-4]! Push LR

STR IP,[SP,#-4]! Push IP
STR R0,[SP,#-4]! Push R0
STR R1,[SP,#-4]! Push R1
SUB SP,SP,#12 Allocate 12
MOV IP,SP IP := SP
 Param1 is always at IP+32
 Param2 is always at IP+28
ADD SP,SP,#12 Deallocate 12
LDR R1,[SP],#4 Pop R1
LDR R0,[SP],#4 Pop R0
LDR IP,[SP],#4 Pop IP
LDR PC,[SP],#4 Return

Here is the stack configuration for this scenario:

Now we have all of the pieces we need to create general purpose subroutines. In
the next lecture we will look at several stack-based parameter passing mechanisms, and
in the lecture after that we explore recursion.

	Lecture #18 – March 24, 2004
	Parameters and the Stack

