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Lecture #15 – March 3, 2004 

A Worked Problem in Floating Point  
In this lecture we will use the floating point capabilities of the ARM to compute 

the square root of a single-precision number in register F0 and put the result into F1.  A 
short list of floating point opcodes available on the ARM is as follows (there are a 
number of other such instructions, including sine, cosine, tangent, common and natural 
logarithms, arcsine, etc., but those aren’t germane to the problem at hand): 

 
ADF Add     MUF Multiply 
SUF Subtract    RSF Reverse Subtract 
DVS Divide    RDF Reverse Divide 
POW Power    RPW Reverse Power 
ABS Absolute Value   SQT Square Root 
CMF Compare 
FLT Float an Integer Register 
FIX Truncate a Floating Register 

Remember that each of the instructions above requires a suffix of S or D to 
determine single or double precision arithmetic, except for CMF, FLT, and FIX.  For all 
the examples here we will use single precision. 

There are several approaches to computing a square root, from simple to complex.  
The simplest is to use a built-in square root instruction or a built-in power instruction, 
such as either of the following: 

 
SQTS F1,F0  F1 := SquareRoot(F0) 

-or- 
POWS F1,F0,#0.5 F1 := F00.5 

Newton-Raphson Square Root 

While those approaches are generally preferred, they are not very instructive in 
how to compute a square root, or even how to use the floating point instructions 
effectively.  Those special instructions may not be even present on some floating point 
processors.  What we will do here is compute square roots using an iterative technique 
called Newton-Raphson iteration.  Examine the figure below, which shows a number 
line containing a sample value of N, ½N, and the square root of N. 

 

For any value of N greater than 1, the square root of N is between 1 and N.  
(Square roots converge to 1; the square root of any value N between 0 and 1 is greater 
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than N but less than 1. We’re going to ignore that case here, but the arguments are pretty 
much the same.) 

If we divide N by its square root we get exactly the square root as our quotient.  
(Obviously.)  Thus, if we divide N by a number smaller than the square root the quotient 
is larger, and vice versa.  Whatever number we “guess” as a divisor, both it and its 
quotient will bracket the true value of the square root.  The average of those two numbers 
must therefore be closer to the true square root value than one of them, and that average 
can be used as a better “guess” value for the next iteration.  This is shown in the 
following drawing, where it is obvious that the average is closer to the true square root 
than one of the two bracketing values (in this example it is closer than both bracket 
values, but the only guarantee is that it will be closer than one of them). 

 

The initial value of the guess can be pretty critical to the running time of this 
algorithm, but for now we will assume that half of the initial value is “good enough” to 
get it going.  Later on we will look at a technique for generating a better initial guess.  In 
high level pseudo code, the technique is written as follows: 

 
Guess := N / 2 
Loop 
 Next := N / Guess 
 If |Guess – Next| < ε Then Exit 
 Guess := (Guess + Next) / 2 
EndLoop 

The algorithm stops when the absolute value of the difference between the current 
guess (Guess) and the next guess (Next) is below some numerical threshold (ε).  The 
selection of the proper value of ε determines the precision of the result, and is usually a 
tiny positive number such as 1.0×2-23 for single precision (which has 23 bits of mantissa). 

Newton-Raphson in ARM Assembly Language 

Dividing N in half to generate the initial guess warrants some discussion here.  On 
the ARM, either the instruction DVFS F1,F0,#2.0  (divide by 2) or the instruction 
MUFS F1,F0,#0.5 (multiply by ½) will work.  Remember that there are only eight 
constants that can be used directly in floating point instructions on the ARM: those 
constants are 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 10.0, and 0.5 (a rather good selection, I think).  
Given a choice between two mathematically equivalent instructions you should generally 
select the fastest one of the pair, and multiplication is nearly always faster than division. 

When we convert the high-level pseudo code to ARM assembly language, we will 
keep N in register F0, the guess in F1, the next guess in F2, and the threshold ε in F3.  
The assembly language fragment follows. 
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  MUFS  F1,F0,#0.5 Guess := N / 2 
Loop  DVFS  F2,F0,F1  Next  := N / Guess 
  CMF  F1,F2  If Guess >= Next… 
  SUFGES F4,F1,F2   Then F4 := Guess - Next 
  SUFLTS F4,F2,F1   Else F4 := Next - Guess 
  CMF  F3,F4   
  BGT  Done   Exit If ε > F4 
  ADFS  F1,F1,F2 
  MUFS  F1,F1,#0.5 Guess := (Guess+Next)/2 
  B  Loop 
Done  … 

Notice that in the construction of F4, which is to contain the absolute value of 
Guess – Next, we append conditional execution to the instructions so that we are 
always subtracting a smaller value from a larger value.  This three-instruction block (the 
compare and the two subtracts) can be replaced by a shorter sequence if we use the 
special absolute value instruction on the ARM: 

 
  SUFS  F4,F1,F2 
  ABSS  F4,F4 

A rewrite of our original pseudo code also results in a slight improvement in 
layout.  By reordering the instructions to force one computation of the new guess value, 
the exit condition moves to the bottom of the loop.  Repeat-loops are always the easiest 
and simplest conditional loops to write in assembly language: 

 
Guess := N / 2 
Repeat 
 Next := N / Guess 
 Guess := (Guess + Next) / 2 
Until |Guess – Next| < ε  

The equivalent assembly language, using the absolute value opcode, is now: 
 
  MUFS  F1,F0,#0.5 Guess := N / 2 
Loop  DVFS  F2,F0,F1  Next  := N / Guess 
  ADFS  F1,F1,F2 
  MUFS  F1,F1,#0.5 Guess := (Guess+Next)/2 
  SUFS  F4,F1,F2 
  ABSS  F4,F4  F4 := Abs(Guess – Next) 
  CMF  F3,F4   
  BLE  Loop   Repeat If F4 > ε 
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The Initial Guess 

The final topic concerns the proper selection of the initial guess.  We’ve been 
using half of the original number N as the first guess, but for larger and larger numbers 
this becomes a weaker and weaker choice.  Ideally, we would like the initial guess to be 
the exact value of the square root, so the iterative algorithm makes only a single pass 
through its loop before exiting.  The closer we get to the correct value at the beginning, 
the fewer passes through the loop will be required. 

If you know about how single-precision floating-point numbers are constructed, 
we can do some “bit bashing” to generate a pretty good first guess.  For any binary 
fraction of the form 1.xxxx×2Y, the exponent of its square root will be Y÷2 (that is, the 
largest integer less than or equal to Y÷2, discarding any fractions when the exponent is 
odd).  For example, the square root of 216 is 28, and the square root of 2-8 is 2-4.  In cases 
where the exponent is odd, the mantissa of the square root should be scaled up or down 
by an extra square root of 2, or about 1.414…, but we can ignore that for now.  Thus, an 
appropriate first guess is 1.0×2Y÷2, and this number can be constructed as follows: 

 
(1) Extract the biased exponent portion of N. 
(2) Remove the bias. 
(3) Divide the exponent by 2. 
(4) Re-add the bias. 
(5) Put the new biased exponent back where it belongs. 
(6) Set the fraction to 1.0 by clearing all bits in the mantissa (since the rule for 

storing floating point numbers says to omit the leading 1 bit to the left of 
the binary point, the rest of the mantissa will be zero). 

All of these steps can be done on the integer side of the processor, so we can take 
advantage of its bit-shifting capabilities.  Somewhere in our program we have the value 
of N stored in memory, and that memory is declared to be a single-precision floating-
point number with the directive:  

 
N   DCFS  value 

To generate the initial guess, we first load N into integer register R0, and take 
things from there.  N is assumed to be positive, since negative numbers are illegal 
arguments to square root; by the time we get this far it is fair to assume that negative 
numbers have been filtered out.  Thus, we can assume that the sign bit is 0.   

By shifting the number in R0 to the right by 23 bits (the size of the single-
precision mantissa) we kill two birds with one stone: we discard the existing mantissa, 
and we align the biased exponent with the right-hand bits of the register.  At this point the 
only thing remaining in R0 is the biased exponent as a simple 8-bit value between 0 and 
255. 
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We can’t divide the biased exponent by two at this point.  We must subtract off 
the bias, divide the now signed integer (between -128 and +127) by two, and then add 
back the bias.  Dividing a signed integer by two is a little more complicated than simply 
shifting it to the right by one bit.  This process will be discussed in detail later. 

Finally, shifting the result back to the left by 23 bits restores the biased exponent 
to its proper position in the number and keeps the mantissa bits equal to zero.  Here is the 
final assembly language code to build the initial guess into integer register R0. 
 
LDR  R0,N  Load 32 bit floating pt into integer R0 
MOV  R0,R0,LSR #23 Discard mantissa, shift exponent down 
SUB  R0,R0,#127 Remove the bias, R0 now in [-128..+127] 
MOVS  R0,R0,ASR #1 Divide R0 by 2 sign extend, C=remainder 
ADCMI R0,R0,#0  Correct for division of odd negatives 
ADD  R0,R0,#127 Re-add the bias 
MOV  R0,R0,LSL #23 Shift exponent back where it belongs 

Register R0 now contains the initial guess, which needs to be transferred via 
memory or the stack to a floating point register such as F1.  Since we have the case 
where the bit pattern in R0 already looks like a floating point number, we cannot use the 
FLT (float) instruction to move the number into a floating point register.  If we did, the 
FLT instruction it will treat the pattern in R0 as a large integer and will attempt to 
convert it to floating point, not knowing that it is already in the correct format.   

The MOVS and the ADCMI instructions in the code above must look very strange.  
Together they properly divide the (no longer biased) signed exponent by two.  The 
instruction MOVS R0,R0,ASR #1 performs a right-shift on R0, dividing it by 2, but it 
preserves the sign bit through sign-extension.  Normally, LSR #1 (logical shift right) 
pumps in a 0-bit at the left as it shifts, but ASR #1 (arithmetic shift right) pumps in 0 if 
the sign bit is 0 (positive) and pumps in 1 if the sign bit is 1 (negative).  This keeps 
positive numbers positive and negative numbers negative.  By using MOVS instead of 
MOV, the N status bit will reflect the sign of that number and the C (carry) bit will hold the 
bit shifted out of the right end of the number.   

The process works fine for positive numbers, but odd negative integers are too 
small by 1 after a simple right-shift.  For example, the even number -4 has (in eight bits) 
binary representation 11111100, which when shifted right with sign extension becomes 
11111110, or -2.  This works OK.  However, the odd number -3 has the binary 
representation 11111101, which when shifted right generates 11111110, also equal to -2.  
The result should be 11111111 in binary, or -1 in decimal.  The detectable difference 
between the two shift examples is in the carry bit, which will become 0 after the shift for 
even numbers (no correction needed) and will become 1 for odd numbers (which are too 
low by 1).  The shift result can be corrected by simply adding to it the value of the carry 
bit.  The add-with-carry instruction ADCMI R0,R0,#0 adds back just the carry bit, but 
the condition allows it to do so only if the original number was negative.  The addition 
doesn’t happen for positive numbers, and negative even numbers aren’t affected. 
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