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Lecture #13 – February 27, 2004 

Introduction to Floating Point  
Up to this point we have considered only integer representations of numbers.  

While a lot can be done with integers, the need arises from time to time to deal with real 
numbers, or numbers with fractions.  As we will see, the limitations of storing numbers 
with fractions into a limited number of bits in computer memory prevent us from using 
all possible real numbers.  In particular, nearly none of the “interesting” numbers can be 
stored perfectly into computer memory with full precision (which would be infinite).  The 
best we can do is to store approximations to those numbers.  The difference between the 
true value of a number and the approximation we are forced to use is the round-off error, 
and we must monitor our calculations carefully to insure that the cumulative round-off 
error does not grow so large over time that it swamps our expected answer. 

Conversions 

In an integer, the rightmost bit has the value 20, or 1, and bits continuously double 
in value as you proceed to the left.  Similarly, starting at some arbitrary bit position in an 
integer, bits continuously halve in value as you proceed to the right, until the rightmost 
bit is reached, which again has the value 1.  If you assume that the decimal point, or more 
properly the binary point, is just to the right of the 20 bit, then continuing the halving 
process gives us bits 2-1=½, 2-2=¼, 2-3=⅛, etc.  This is illustrated in the following 
diagram: 

 

With this information we can generate simple binary fractions.  For example, the 
decimal number 23.375 has 10111.011 as its equivalent binary representation.  
Converting the whole portion of the number to binary is the same here as for any integer: 
23 = 1×16 + 0×8 + 1×4 + 1×2 + 1×1 = 16+0+4+2+1 = 23.   

Binary fraction bits have values 20=½=0.5, 2-1=¼=0.25, 2-2=⅛=0.125, etc.  The 
decimal fraction 0.375, which is the same as the rational number ⅜, is therefore the sum 
of 0×½ + 1×¼ + 1×⅛, or 0.011 in binary.  

The process of converting from decimal to binary is very straightforward if you 
remember that multiplying by two in any base is the same as a left-shift of one binary bit, 
and that dividing by two in any base is the same as a right-shift of one binary bit.  For 
whole numbers you continuously divide by two and record remainders (which can be 
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only 0 or 1) until there is nothing left of the original number; the list of remainders 
contains the bits of the binary number in right-to-left order.   

For fractions you continuously multiply by two and record any whole part (which 
can be only 0 or 1) until there is nothing left of the original fraction or until you have 
“enough” bits.  The list of bits that results is in natural left-to-right order. 

For a number such as 23.375 the process is to convert the whole part (23) 
separately from the fractional part (0.375).  First we convert the whole part: when 
dividing by two, we record the remainder (0 or 1), and then drop that remainder from the 
result leaving a smaller number for the next step.  Next, we convert the fractional part: 
when multiplying by two, we record the whole part (0 or 1), and then drop that whole 
part from the result leaving just the fraction for the next step.  This process is shown 
below: 

 

These techniques work well for numbers where the fraction is composed of a 
small, finite list of inverse powers of two.  Unfortunately, that is a very small portion of 
the set of all possible real numbers.  Transcendental numbers such as π (approximately 
3.14151926535…) have an infinite number of non-repeating digits in decimal, and the 
situation isn’t improved when the numbers are converted to binary.  Rational numbers 
such as ⅓, which have an infinite number of repeating digits in decimal (0.33333…), also 
have an infinite number of fraction bits in binary. 

What is surprising, however, is that some perfectly well behaved rational numbers 
in decimal also have infinite binary fractions.  The classic example of this is 1/10, which 
has 0.1 as its decimal value.  In binary the equivalent value is 0.000110011001100…, 
which repeats the pattern “0011” forever. 

Variables in memory have finite sizes.  Precision is lost any time you attempt to 
store an infinite number of bits into a fixed-size slot!  This is the great “dirty secret” of 
computer science; nearly all real numbers lose fraction bits when stored with a fixed 
number of bits. 
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Simple Fixed-Point Storage Techniques 

The simplest approach to storing numbers with fractions into memory is to 
arbitrarily assign some chunk of bits to contain the whole part and the rest to hold the 
fraction.  This representation is called fixed-point.  For example, in a 16-bit memory 
word you might assign 12 bits to the whole part and 4 bits to the fraction, 5 bits to the 
whole part and 11 to the fraction, or split the difference and assign 8 and 8.  As far as 
addition and subtraction are concerned, one choice is just as good as another.  The only 
requirement is that fixed-point representations must not be mixed; if two numbers are 
added or subtracted the binary points must “line up” or the result will be meaningless. 

For multiplication the rules are a little more complicated.  In any base, the count 
of digits in the product will be the sum of the digits counts of the two numbers, and the 
count of digits in the fraction will be the sum of the digit counts of the fractional parts of 
the two numbers.  For example, when multiplying two 16-bit numbers together, where 
each number has 12 whole bits and 4 fraction bits, the product will be a 32-bit number 
with 24 bits of whole part and 8 bits of fraction.  The last step, called normalization, is to 
extract the 16 bits containing the binary point aligned to the correct position.  Loss of 
precision results if the discarded fraction bits are non-zero, and overflow results if the 
discarded whole bits are non-zero.  This is shown below: 

 

This normalization process is often simplified if the number of bits in the whole 
part and the number of bits in the fraction correspond to byte boundaries.  For 16-bit 
numbers this usually means 8 whole bits and 8 fraction bits; for 32-bit numbers this 
means 16 whole bits and 16 fraction bits. 

As an unsigned integer, 16 bits is enough to hold any value between 0 and 65535, 
but the largest number possible is only 255.996 when split into half whole bits and half 
fraction bits.  Similarly, 32 bits can hold a maximum unsigned value of 4294967295, but 
the largest possible number is only 65535.99998 when split into half whole bits and half 
fraction bits.  By allocating bits to the fraction, you lose out big time on the maximum 
integer value. 

While fixed-point arithmetic is actually pretty easy to implement in assembly 
language, the representation has some serious pitfalls.  Very large numbers and very 
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small numbers can’t be constructed; even if whole bits or fraction bits are not required for 
some particular number they cannot be reallocated to the section were they are most 
needed.  These pitfalls are addressed in the next section. 

Floating-Point 

In floating-point representations, very large and very small numbers are equally 
constructible.   Most similar to scientific notation, floating-point representations require 
both a normalized fraction and a scale factor to properly position the binary point.  In our 
earlier example we saw that the decimal number 23.375 is 10111.011 in binary.  The 
normalized scientific notation version of 23.375 is 2.3375×101, and the normalized binary 
version of 10111.011 is 1.0111011×24. 

With the exception of zero, every normalized binary number is of the form 
1.xxxx×2YYYY, where the bit to the left of the binary point is always a 1.  If it is always 
known to be a 1, we don’t need to store it.  This releases one more bit of precision to be 
used for the fractional part of the number. 

The power of 2 can be either positive or negative, where positive values indicate 
that the binary point should be shifted some number of bits to the right and negative 
values indicate that the binary point should be shifted some number of bits to the left.  
Rather than store this exponent as a signed integer, most floating-point representations 
add a bias to that value to insure that the resulting biased exponent is always positive.   

In single-precision floating-point, the 32 bits of a word are divided up into three 
regions: 1 bit for the sign (0 for “+” and 1 for “-”), 8 bits for the biased exponent, and 23 
bits for the fraction, called the mantissa or significand.  The bias is +127. 

In the example, 1.0111011×24, the biased exponent value is 4 + 127 = 131, which 
is 10000011 in binary.  The mantissa consists of everything to the right of the binary 
point, discarding the leading 1.  Unused low-order mantissa bits are filled with 0.  Since 
the number is positive the sign bit will be 0.  The final single-precision binary version of 
23.375 stored in memory is: 
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