
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #12 – February 25, 2004

Ugly Programming Tricks
In this lecture we will visit a number of “tricks” available in assembly language

not normally seen in high-level languages. Some of the techniques are valid, legitimate
approaches to solving problems, but others are of dubious value and are to be used (if at
all) in rare, limited and extreme circumstances. In many cases these tricks are not
necessary unless program memory is unusually tight, execution speed is critical, or both.

Mixing Code and Data

Up to this point, subroutine design has been presented in a style where any data
variables local to a subroutine are located in primary memory very near to the
subroutine’s code. For example, both subroutines in the example below have their own
local storage (for saving the contents of R0) directly following their corresponding return
instructions:

;--------------------------------

Sub1 STR R0,Sub1SaveR0
 …
 LDR R0,Sub1SaveR0
 MOV PC,LR

Sub1SaveR0 DCD 0

;--------------------------------

Sub2 STR R0,Sub2SaveR0
 …
 LDR R0,Sub2SaveR0
 MOV PC,LR

Sub2SaveR0 DCD 0

;--------------------------------

The word in memory which is reserved for Sub1SaveR0 directly follows the
MOV PC,LR instruction of Sub1 and directly precedes the STR R0,Sub2SaveR0
instruction of Sub2. Storing a value into Sub1SaveR0 changes that single word of
primary memory located between the code blocks of the two subroutines. Note that the
DCD directives need not initialize their corresponding data variables to zero, but instead
could place in them arbitrary numeric values, or even leave those locations uninitialized.
I find it convenient to start all variables at a known and consistent state.

Page 1 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

One advantage of this approach is that the data values are located close to where
they are used. The assembly language programmer does not have to hunt all over a large
program to locate the data for a particular routine.

There is another, less obvious, advantage of keeping memory variables near their
associated code. Memory reference instructions on many computers have a limited
addressing range. For example, the LDR and STR instructions on the ARM have only 12
bits of the instruction available to contain an address value, which is treated as an offset
relative to one of the registers (such as the program counter). One more bit of the
instruction determines if the offset is added to or subtracted from the given base register,
and so no memory location can be addressed directly, without special techniques, if it is
more than ±4095 bytes from the current value of the program counter. Keeping data near
the associated code reduces the possibility of a memory reference being out of range of
its instruction. We will explore techniques later on of using other base registers for
referencing memory variables at arbitrary addresses.

A major disadvantage of this technique is that the code cannot be placed into
ROM (read only memory). Small embedded systems most likely do not have disk drives,
and must contain all executable program code in ROM. Data variables must be located in
RAM. No system will interleave RAM and ROM at the fine detail level required by
individual subroutines, but only at much larger scales instead (on the order of kilobytes or
megabytes in each block).

Another disadvantage appears when storing arrays in the data areas between code
blocks. Indexing beyond the end of an array is a very common problem, particularly in
assembly language. If the next bytes of primary memory beyond the end of an array
contain instructions, an array overrun error will destroy executable code (or worse,
change the code into a different set of instructions with unpredictable behavior).

Keeping data separate from code reduces or eliminates this kind of problem. An
array overrun error is still a serious problem and is to be avoided at all costs, but in such
cases the code remains unchanged and has a remote chance of recovering. Operating
systems have an easier time preventing memory reference errors when code and data are
kept separate as well. This effectively enforces a “ROM/RAM” distinction for individual
programs at the OS level instead of at the hardware level.

Self-Modifying Code

Occasionally, we do want to write over instructions in the code section of a
program. This is rarely a good idea, and is to be used only in extreme circumstances, for
it is nearly impossible to debug a self-modifying program.

For example, we might have a program structure that contains an IF-THEN-ELSE
block inside a loop of some kind. In a program such as this, the IF test is performed
during every iteration of the loop. For programs where the IF test does not change its
result as a consequence of executing the loop code, the IF test is static and will always
guide the flow of the program through the same branch of the IF-THEN-ELSE.

Page 2 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Executing the same test over and over again when we already know the answer is
very inefficient. Normally we would optimize the code for that case by inverting the
order of the components and placing a copy of the loop code inside each branch of the IF-
THEN-ELSE block. This is shown in the following high-level pseudo code:

Original Code Speed Optimized Code

Loop If Flag Then
 block #1 Loop
 block #1
 If Flag Then block #2
 block #2 block #4
 Else EndLoop
 block #3 Else
 EndIf Loop
 block #1
 block #4 block #3
EndLoop block #4
 EndLoop
 EndIf

Notice that we have traded space for speed. The version on the right takes up
more memory space than the version on the left because it contains duplicate copies of
the code in blocks #1 and #4, but it runs much faster because the IF test was performed
only once instead of in every pass through the loop. (None of the code in blocks #1
through #4 may change the value of Flag; if they do then this optimization technique
cannot be used.)

How can we have both small program size and fast execution speed? The self-
modifying approach is to set up the loop with a “slot” of bytes as a placeholder region big
enough to contain the larger of blocks #2 or #3, then on the result of the IF test copy the
appropriate section of code into the slot before executing the loop. This is shown below:

Self Modifying Code

If Flag Then
 Copy block #2 code into block slot
Else
 Copy block #3 code into block slot
EndIf

Loop
 block #1
 block slot placeholder region
 block #4
EndLoop

Page 3 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Each block of code occurs only once, the IF test is performed only once, and the
loop code runs as fast as possible. Compared to the earlier examples, our new result is
essentially no larger than the original code (on the left), and no slower than the speed
optimized code (on the right). This approach can be attractive when bytes are tight and
shaving microseconds is crucial.

Here is an example of how that might be done in ARM assembly language. Say
that inside our loop we will need to perform either an ADD or a SUB of 1 with the R0
register, but we don’t know which one ahead of time. Templates for those instructions
are defined at labels ThenCode and ElseCode; the templates are never actually
executed at those locations, but instead are treated as data by the two LDR instructions at
the top of the code block. Whichever, then, is the appropriate instruction (determined by
a comparison which sets or clears one of the status flags, Z in this case) is stored as data
into the BlockSlot placeholder location in the middle of the instruction stream! When
the program flow reaches the BlockSlot location the processor will simply execute
whatever instruction it finds there.

 <perform some comparison here that
 affects the Z status bit, such as
 asking about the variable “Flag”>

 LDREQ R0,ThenCode Either get this template
 LDRNE R0,ElseCode or this template, then
 STR R0,BlockSlot modify the code below.

Loop1 …
 …
 …
BlockSlot DCD 0 placeholder region
 …
 …
 B Loop1

ThenCode ADD R0,R0,#1 instruction template #1
ElseCode SUB R0,R0,#1 instruction template #2

Obviously, this technique cannot be used at all if the executable code is placed
into ROM. The code must be executing from RAM so that the self-modifying portion
can overwrite one instruction with another.

Code templates may contain multiple instructions; the placeholder region must be
large enough to accommodate the largest possible template. Any template smaller than
the reserved placeholder region must be padded out with NOP (no-operation) instructions
to insure all bytes in the placeholder are properly defined. If the memory reserved for the
placeholder region is accidentally smaller than the size of the templates, then copying any
template into the placeholder will overwrite instructions after the end of the region.
Looking at the source code for clues to the program’s behavior will then prove fruitless,

Page 4 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

as the executing code bears no resemblance to what the programmer actually wrote! This
problem is exacerbated on processors with variable length instructions: not only are the
instructions different from what the programmer expects, but what was a data field of an
old instruction might become the opcode for a new instruction, depending on how bytes
are overwritten!

It is a rare circumstance that requires self-modifying code, and it is to be avoided
at (nearly) all costs. Misbehaving self-modifying code is incredibly difficult to debug.
The benefits gained by using it are rarely counterbalanced by the frustration encountered
in getting it to work correctly. Know about it, keep the technique in your bag of tricks,
but never, ever use it casually! If you must use self-modifying code, document the hell
out of it! As the bumper sticker says, “Meddle not in the affairs of dragons, for you are
crunchy and good with ketchup!” Here there be dragons!

Patching Binary Programs

A friend of mine once worked on a large assembly language project for a Z-80
microprocessor chip. The Z-80 is a Zilog-made, enhanced version of the Intel 8080,
which was a predecessor of the 8088. As the deadline for project completion drew near,
she realized that at one point in her code she had used the wrong instruction opcode; she
had either used ADD instead of SUB, or ADC instead of ADD, or some similar mistake.

Rather than changing the source code, then reassembling, relinking, and reloading
the program, she simply edited the executable code in a hexadecimal byte editor,
replacing the errant opcode with the hexadecimal value of the correct opcode. The
program then worked perfectly. When she told her computer-scientist husband of this, he
simply replied, “Now you have known sin!”

The advantage of this approach is quickly overwhelmed by its disadvantages. It is
very easy to change a byte at the wrong address, or to change the correct byte to an
incorrect value. If the hexadecimal byte editor allows for the insertion or deletion of
bytes in the code stream instead of simple replacement, many relative offsets (such as
those in branch instructions) will now point to the wrong address.

There is also a mismatch between the source code and the executable; the first no
longer assembles into an exact copy of the second. To be completely intellectually
honest, any patches of this kind must be carefully documented, and then the source code
must be changed correspondingly, reassembled, and the result compared byte-for-byte
with the byte-edited-executable version to verify that they are identical. The more binary
patches that are made they harder this verification step becomes.

Siamese Subroutines

This is a technique that I actually use in my assembly language programs, but
there are limited circumstances where it is actually useful. If you have several
subroutines that are identical except for a very small portion of code (such as the loading
of subroutine-specific constants), then the total amount of code can be reduced by

Page 5 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

creating Siamese subroutines that share code bodies. Siamese subroutines have multiple
entry points, but only one exit point. Consider the following four subroutines, which are
identical after the MOV R0,#const instructions:

Sub1 STR R0,SaveR0 Sub2 STR R0,SaveR0
 MOV R0,#const1 MOV R0,#const2
 … …
 … …
 … …
 LDR R0,SaveR0 LDR R0,SaveR0
 MOV PC,LR MOV PC,LR

Sub3 STR R0,SaveR0 Sub4 STR R0,SaveR0
 MOV R0,#const3 MOV R0,#const4
 … …
 … …
 … …
 LDR R0,SaveR0 LDR R0,SaveR0
 MOV PC,LR MOV PC,LR

In a set of Siamese subroutines, the prolog code from each entry point up through
the last unique section is written explicitly, and after each prolog the code branches to the
section common to all. This is shown as follows:

Sub1 STR R0,SaveR0 prolog for Sub1
 MOV R0,#const1 prolog for Sub1
 B SubGo goto common section

Sub2 STR R0,SaveR0 prolog for Sub2
 MOV R0,#const2 prolog for Sub2
 B SubGo goto common section

Sub3 STR R0,SaveR0 prolog for Sub3
 MOV R0,#const3 prolog for Sub3
 B SubGo goto common section

Sub4 STR R0,SaveR0 prolog for Sub4
 MOV R0,#const4 prolog for Sub4
; B SubGo commented out

SubGo branch target
 … code common to all
 … code common to all
 … code common to all
 LDR R0,SaveR0 code common to all
 MOV PC,LR code common to all

Page 6 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 7 of 7

Notice that in the last prolog the B (unconditional branch) instruction occurs in
the code one instruction before the common target of all such branches. Executing the
branch wouldn’t actually change the program counter, so the branch isn’t necessary. To
keep the last prolog consistent with all others the branch instruction is written into the
source code, but is then commented out so it will not take up space in the executable or
waste any execution time.

For Siamese subroutines to be effective the prolog code must be short and simple,
and each must be carefully crafted to operate identically to all other prologs. When done
correctly, Siamese subroutines can save a considerable amount of memory space by
avoiding the duplication of common code fragments, and execute faster than a series of
small parameterized drivers for a general purpose subroutine.

Conclusions

Sometimes knowing how to do things the wrong way helps us do things correctly!
The techniques discussed here are very important for the average assembly language
programmer to know, and have been used in many successful (and unsuccessful)
assembly language projects in the past, but they may be of limited utility to “modern”
programmers.

	Lecture #12 – February 25, 2004
	Ugly Programming Tricks
	
	Mixing Code and Data
	Self-Modifying Code
	Patching Binary Programs
	Siamese Subroutines
	Conclusions

