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Lecture #12 – February 25, 2004 

Ugly Programming Tricks  
In this lecture we will visit a number of “tricks” available in assembly language 

not normally seen in high-level languages.  Some of the techniques are valid, legitimate 
approaches to solving problems, but others are of dubious value and are to be used (if at 
all) in rare, limited and extreme circumstances.  In many cases these tricks are not 
necessary unless program memory is unusually tight, execution speed is critical, or both. 

Mixing Code and Data 

Up to this point, subroutine design has been presented in a style where any data 
variables local to a subroutine are located in primary memory very near to the 
subroutine’s code.  For example, both subroutines in the example below have their own 
local storage (for saving the contents of R0) directly following their corresponding return 
instructions: 

 
;-------------------------------- 
 
Sub1   STR R0,Sub1SaveR0 
   … 
   LDR R0,Sub1SaveR0 
   MOV PC,LR 
 
Sub1SaveR0 DCD 0 
 
;-------------------------------- 
 
Sub2   STR R0,Sub2SaveR0 
   … 
   LDR R0,Sub2SaveR0 
   MOV PC,LR 
 
Sub2SaveR0 DCD 0 
 
;-------------------------------- 

The word in memory which is reserved for Sub1SaveR0 directly follows the 
MOV PC,LR instruction of Sub1 and directly precedes the STR R0,Sub2SaveR0 
instruction of Sub2.  Storing a value into Sub1SaveR0 changes that single word of 
primary memory located between the code blocks of the two subroutines.  Note that the 
DCD directives need not initialize their corresponding data variables to zero, but instead 
could place in them arbitrary numeric values, or even leave those locations uninitialized.  
I find it convenient to start all variables at a known and consistent state. 
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One advantage of this approach is that the data values are located close to where 
they are used.  The assembly language programmer does not have to hunt all over a large 
program to locate the data for a particular routine.   

There is another, less obvious, advantage of keeping memory variables near their 
associated code.  Memory reference instructions on many computers have a limited 
addressing range.  For example, the LDR and STR instructions on the ARM have only 12 
bits of the instruction available to contain an address value, which is treated as an offset 
relative to one of the registers (such as the program counter).  One more bit of the 
instruction determines if the offset is added to or subtracted from the given base register, 
and so no memory location can be addressed directly, without special techniques, if it is 
more than ±4095 bytes from the current value of the program counter.  Keeping data near 
the associated code reduces the possibility of a memory reference being out of range of 
its instruction.  We will explore techniques later on of using other base registers for 
referencing memory variables at arbitrary addresses. 

A major disadvantage of this technique is that the code cannot be placed into 
ROM (read only memory).  Small embedded systems most likely do not have disk drives, 
and must contain all executable program code in ROM.  Data variables must be located in 
RAM.  No system will interleave RAM and ROM at the fine detail level required by 
individual subroutines, but only at much larger scales instead (on the order of kilobytes or 
megabytes in each block).   

Another disadvantage appears when storing arrays in the data areas between code 
blocks.  Indexing beyond the end of an array is a very common problem, particularly in 
assembly language.  If the next bytes of primary memory beyond the end of an array 
contain instructions, an array overrun error will destroy executable code (or worse, 
change the code into a different set of instructions with unpredictable behavior).   

Keeping data separate from code reduces or eliminates this kind of problem.  An 
array overrun error is still a serious problem and is to be avoided at all costs, but in such 
cases the code remains unchanged and has a remote chance of recovering.  Operating 
systems have an easier time preventing memory reference errors when code and data are 
kept separate as well.  This effectively enforces a “ROM/RAM” distinction for individual 
programs at the OS level instead of at the hardware level. 

Self-Modifying Code 

Occasionally, we do want to write over instructions in the code section of a 
program.  This is rarely a good idea, and is to be used only in extreme circumstances, for 
it is nearly impossible to debug a self-modifying program. 

For example, we might have a program structure that contains an IF-THEN-ELSE 
block inside a loop of some kind.  In a program such as this, the IF test is performed 
during every iteration of the loop.  For programs where the IF test does not change its 
result as a consequence of executing the loop code, the IF test is static and will always 
guide the flow of the program through the same branch of the IF-THEN-ELSE. 
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Executing the same test over and over again when we already know the answer is 
very inefficient.  Normally we would optimize the code for that case by inverting the 
order of the components and placing a copy of the loop code inside each branch of the IF-
THEN-ELSE block.  This is shown in the following high-level pseudo code: 

 
Original Code    Speed Optimized Code 
 
Loop      If Flag Then 
 block #1     Loop 
        block #1 
 If Flag Then     block #2 
  block #2     block #4 
 Else      EndLoop 
  block #3   Else 
 EndIf     Loop 
        block #1 
 block #4      block #3 
EndLoop       block #4 
       EndLoop 
      EndIf 

Notice that we have traded space for speed.  The version on the right takes up 
more memory space than the version on the left because it contains duplicate copies of 
the code in blocks #1 and #4, but it runs much faster because the IF test was performed 
only once instead of in every pass through the loop.  (None of the code in blocks #1 
through #4 may change the value of Flag; if they do then this optimization technique 
cannot be used.) 

How can we have both small program size and fast execution speed?  The self-
modifying approach is to set up the loop with a “slot” of bytes as a placeholder region big 
enough to contain the larger of blocks #2 or #3, then on the result of the IF test copy the 
appropriate section of code into the slot before executing the loop.  This is shown below: 

 
Self Modifying Code 
 
If Flag Then 
 Copy block #2 code into block slot 
Else 
 Copy block #3 code into block slot 
EndIf 
 
Loop 
 block #1 
 block slot   placeholder region 
 block #4 
EndLoop 
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Each block of code occurs only once, the IF test is performed only once, and the 
loop code runs as fast as possible.  Compared to the earlier examples, our new result is 
essentially no larger than the original code (on the left), and no slower than the speed 
optimized code (on the right).  This approach can be attractive when bytes are tight and 
shaving microseconds is crucial. 

Here is an example of how that might be done in ARM assembly language.  Say 
that inside our loop we will need to perform either an ADD or a SUB of 1 with the R0 
register, but we don’t know which one ahead of time.  Templates for those instructions 
are defined at labels ThenCode and ElseCode; the templates are never actually 
executed at those locations, but instead are treated as data by the two LDR instructions at 
the top of the code block.  Whichever, then, is the appropriate instruction (determined by 
a comparison which sets or clears one of the status flags, Z in this case) is stored as data 
into the BlockSlot placeholder location in the middle of the instruction stream!  When 
the program flow reaches the BlockSlot location the processor will simply execute 
whatever instruction it finds there. 
 

  <perform some comparison here that 
   affects the Z status bit, such as 
   asking about the variable “Flag”> 
 
  LDREQ R0,ThenCode Either get this template 
  LDRNE R0,ElseCode or this template, then 
  STR  R0,BlockSlot modify the code below. 
 
Loop1 … 
  … 
  … 
BlockSlot DCD  0   placeholder region 
  … 
  … 
  B  Loop1 
 
ThenCode ADD  R0,R0,#1  instruction template #1 
ElseCode SUB  R0,R0,#1  instruction template #2 

Obviously, this technique cannot be used at all if the executable code is placed 
into ROM.  The code must be executing from RAM so that the self-modifying portion 
can overwrite one instruction with another.   

Code templates may contain multiple instructions; the placeholder region must be 
large enough to accommodate the largest possible template.  Any template smaller than 
the reserved placeholder region must be padded out with NOP (no-operation) instructions 
to insure all bytes in the placeholder are properly defined.  If the memory reserved for the 
placeholder region is accidentally smaller than the size of the templates, then copying any 
template into the placeholder will overwrite instructions after the end of the region.  
Looking at the source code for clues to the program’s behavior will then prove fruitless, 
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as the executing code bears no resemblance to what the programmer actually wrote!  This 
problem is exacerbated on processors with variable length instructions: not only are the 
instructions different from what the programmer expects, but what was a data field of an 
old instruction might become the opcode for a new instruction, depending on how bytes 
are overwritten! 

It is a rare circumstance that requires self-modifying code, and it is to be avoided 
at (nearly) all costs.  Misbehaving self-modifying code is incredibly difficult to debug.  
The benefits gained by using it are rarely counterbalanced by the frustration encountered 
in getting it to work correctly.  Know about it, keep the technique in your bag of tricks, 
but never, ever use it casually!  If you must use self-modifying code, document the hell 
out of it!  As the bumper sticker says, “Meddle not in the affairs of dragons, for you are 
crunchy and good with ketchup!”  Here there be dragons! 

Patching Binary Programs 

A friend of mine once worked on a large assembly language project for a Z-80 
microprocessor chip.  The Z-80 is a Zilog-made, enhanced version of the Intel 8080, 
which was a predecessor of the 8088.  As the deadline for project completion drew near, 
she realized that at one point in her code she had used the wrong instruction opcode; she 
had either used ADD instead of SUB, or ADC instead of ADD, or some similar mistake. 

Rather than changing the source code, then reassembling, relinking, and reloading 
the program, she simply edited the executable code in a hexadecimal byte editor, 
replacing the errant opcode with the hexadecimal value of the correct opcode.  The 
program then worked perfectly.  When she told her computer-scientist husband of this, he 
simply replied, “Now you have known sin!” 

The advantage of this approach is quickly overwhelmed by its disadvantages.  It is 
very easy to change a byte at the wrong address, or to change the correct byte to an 
incorrect value.  If the hexadecimal byte editor allows for the insertion or deletion of 
bytes in the code stream instead of simple replacement, many relative offsets (such as 
those in branch instructions) will now point to the wrong address. 

There is also a mismatch between the source code and the executable; the first no 
longer assembles into an exact copy of the second.  To be completely intellectually 
honest, any patches of this kind must be carefully documented, and then the source code 
must be changed correspondingly, reassembled, and the result compared byte-for-byte 
with the byte-edited-executable version to verify that they are identical.  The more binary 
patches that are made they harder this verification step becomes. 

Siamese Subroutines 

This is a technique that I actually use in my assembly language programs, but 
there are limited circumstances where it is actually useful.  If you have several 
subroutines that are identical except for a very small portion of code (such as the loading 
of subroutine-specific constants), then the total amount of code can be reduced by 

Page 5 of 7 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

creating Siamese subroutines that share code bodies.  Siamese subroutines have multiple 
entry points, but only one exit point.  Consider the following four subroutines, which are 
identical after the MOV R0,#const instructions: 

 
Sub1 STR R0,SaveR0  Sub2 STR R0,SaveR0 
 MOV R0,#const1  MOV R0,#const2 
 …     … 
 …     … 
 …     … 
 LDR R0,SaveR0   LDR R0,SaveR0 
 MOV PC,LR   MOV PC,LR 
 
 
Sub3 STR R0,SaveR0  Sub4 STR R0,SaveR0 
 MOV R0,#const3  MOV R0,#const4 
 …     … 
 …     … 
 …     … 
 LDR R0,SaveR0   LDR R0,SaveR0 
 MOV PC,LR   MOV PC,LR 

In a set of Siamese subroutines, the prolog code from each entry point up through 
the last unique section is written explicitly, and after each prolog the code branches to the 
section common to all.  This is shown as follows: 

 
Sub1 STR R0,SaveR0  prolog for Sub1 
 MOV R0,#const1 prolog for Sub1 
 B SubGo  goto common section 
 
Sub2 STR R0,SaveR0  prolog for Sub2 
 MOV R0,#const2 prolog for Sub2 
 B SubGo  goto common section 
 
Sub3 STR R0,SaveR0  prolog for Sub3 
 MOV R0,#const3 prolog for Sub3 
 B SubGo  goto common section 
 
Sub4 STR R0,SaveR0  prolog for Sub4 
 MOV R0,#const4 prolog for Sub4 
; B SubGo  commented out 
 
SubGo    branch target 
 …    code common to all 
 …    code common to all 
 …    code common to all 
 LDR R0,SaveR0  code common to all 
 MOV PC,LR  code common to all 
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Notice that in the last prolog the B (unconditional branch) instruction occurs in 
the code one instruction before the common target of all such branches.  Executing the 
branch wouldn’t actually change the program counter, so the branch isn’t necessary.  To 
keep the last prolog consistent with all others the branch instruction is written into the 
source code, but is then commented out so it will not take up space in the executable or 
waste any execution time. 

For Siamese subroutines to be effective the prolog code must be short and simple, 
and each must be carefully crafted to operate identically to all other prologs.  When done 
correctly, Siamese subroutines can save a considerable amount of memory space by 
avoiding the duplication of common code fragments, and execute faster than a series of 
small parameterized drivers for a general purpose subroutine. 

Conclusions 

Sometimes knowing how to do things the wrong way helps us do things correctly!  
The techniques discussed here are very important for the average assembly language 
programmer to know, and have been used in many successful (and unsuccessful) 
assembly language projects in the past, but they may be of limited utility to “modern” 
programmers. 
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