
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #9 – February 18, 2004

Introduction to Subroutines
In all computer systems there is a hardware mechanism to support subroutines,

which are roughly equivalent to procedures in a high-level language. A subroutine is a
section of the program code with an entry point (an address) at the beginning of the
section and a special return mechanism at the end. When a subroutine is called from
some program location, the return mechanism must jump back to the instruction after the
call. The return mechanism cannot be a simple branch or jump, because the return point
changes depending on where the subroutine was called from. When a subroutine is
called, the hardware must somehow store the current return address in a way that it can
be retrieved at the end of the subroutine. In the diagram below, the subroutine code is
shown off to the side of the main program, but in reality it is in the same memory space
as the rest of the program, at some point later on in the stream of program bytes.

In older machines such as the DEC PDP-8 and the CDC-3300 and CDC-6000
series, the return address of a subroutine call was stored in the first word of the
subroutine, and the first executable instruction of the subroutine was in the second word.
When a subroutine is called, the hardware automatically stores the return address in the
first word and jumps to the second. At the end of the subroutine (or at any point where
the appropriate action is to exit the subroutine early) the instruction to exit is to jump
indirect through the beginning word of the subroutine. A jump indirect instruction says
to go to the address specified in the instruction and then use the contents of that word as
the actual target address of the jump (i.e., “I don’t know where to go, but I know who
does”).

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

This process is outlined in the following code fragment. The opcodes shown are
not for any particular computer, but are “generic” in some sense. The JMS opcode means
“jump to subroutine”, DW means “define word” (i.e., reserve a word of memory), and
JMP I means “jump indirect”.

 …
 JMS SUB1 Subroutine call.
 … The address of this
 instruction is stored
 in the first word of the
 subroutine.

SUB1 DW 0 Return address placeholder
 … 1ST actual instruction
 …
 JMP I SUB1 Return from subroutine

In this approach there is a unique memory location at the start of every subroutine
to store the return address for that subroutine. Thus, it is very easy for one subroutine to
call another, creating a nested call. While it is simple, easy to implement in hardware,
and fast to execute, this call-return mechanism normally does not support recursion (a
subroutine that calls itself). To allow for recursion, an assembly language programmer
must write code in every recursive subroutine to explicitly push the return address onto a
stack upon entry and pop it upon exit.

In the 6502 there is a hardware stack, fixed in memory at page 1, and on the 8088
the SS segment register is set by each program to point to the memory block containing
the stack for that program. In both cases there are instructions that automatically push the
return address on the stack during a subroutine call and pop it off during a subroutine
return. The 6502 instructions are JSR (jump to subroutine) and RTS (return from
subroutine), while on the 8088 the corresponding instructions are CALL and RET. By
using the stack to hold return addresses, recursive subroutine calls are as easy to
implement as are nested subroutine calls.

The 8088 has an extra complexity in that there are two sets of CALL and RET
instructions; one set for “near” calls to addresses within the same code segment as the
call and one set for “far” calls to an address in another segment. Near calls push only the
address offset (two bytes) of the current code segment onto the stack, while far calls push
both the address offset and the address segment (four bytes total) onto the stack. It is
critical that the assembly language programmer insure the type of return instruction
matches the type of call; pushing two bytes and popping four or pushing four and
popping two both cause subroutines to return to the wrong address in the wrong segment
(as well as leaving the stack in an unacceptable state).

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

On the ARM the subroutine call-return mechanism falls somewhere between the
two methods listed earlier. While the ARM instruction set does support hardware stack
operations, calling a subroutine does not automatically push the return address on the
stack, and subroutine calls cannot be nested without the programmer paying special
attention to the return address. Instead, the call instruction, called BL for branch and
link, automatically stores the return address of the subroutine into register R14. Register
R14 is also known as the link register, and assemblers use the synonym LR for R14. For
simple subroutines, returning to the calling program requires only that the programmer
move the contents of R14 into R15, or MOV PC,LR, as shown below:

A naïve programmer might attempt to nest subroutine calls on the ARM without
thinking about what happens to the return address. While calling SUB1 from the main
program puts the return address to SUB1 in LR, calling SUB2 from within SUB1 replaces
LR with the return address to SUB2. The return address to SUB1 is lost. Subroutine
SUB2 works correctly, but subroutine SUB1 returns back into itself, creating an infinite
loop. This is shown below:

While we will examine use of the stack in a future lecture, the simple approach to
nesting subroutines on the ARM is to reserve one word of memory for each subroutine
and use that location as temporary storage for the return address. In some sense this is

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

simulating the mechanism of the PDP-8 and CDC-3300, but where the programmer is
responsible for saving the return address to and restoring the return address from that
memory location.

In the following diagram, subroutine SUB1 has an associated memory location
called Ret1 (defined by the programmer). The first task of the subroutine is to store the
contents of LR into Ret1, and the last task before the subroutine returns is to load LR
from Ret1. Notice that the pair of instructions that end the subroutine can be combined
into one: LDR LR,Ret1 followed by MOV PC,LR can be combined into the single
instruction LDR PC,Ret1.

Subroutine SUB2 need not save and restore its return address since it does not call
any other routines and thus never damages the contents of the LR register.

	Lecture #9 – February 18, 2004
	Introduction to Subroutines

