
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #7 – February 11, 2004

A Worked Problem for the ARM
In this lecture we are going to look at a single problem in detail and from many

angles. By doing so, we will explore basic concepts of programming in ARM assembly
language. We will also explore methods of reworking code so that it requires fewer
instructions, uses fewer registers, and/or runs faster. The sample problem is very simple
to describe: given some positive integer N, we want to compute the sum of all integers
from 1 up to and including N. In Pascal, this would be written as:

Total := 0 ;
For I := 1 To N Do
 Total := Total + I ;

An equivalent form which is more easily converted into assembly language is
written as follows:

Total := 0 ;
I := 1 ;
While (I <= N) Do
 Begin
 Total := Total + I ;
 I := I + 1 ;
 End ;

If we act as a “stupid compiler” by mechanically translating each statement into
assembly language independently of all other statements, we will get a working but very
inefficient version of the program. The goal of this lecture is to demonstrate stupid,
mediocre, and smart translations of this code into ARM assembly language.

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

For the first (stupid) translation we will assume that integer variables Total, I,
and N have been allocated somewhere in memory, and that somehow a positive value got
entered into N. (Remember that the CMP instruction automatically modifies the status
bits in the program status register without requiring an S suffix on the instruction.)
Examine the code below to see if you can determine where the code can be streamlined.

 MOV R0,#0 Total := 0
 STR R0,Total
 MOV R0,#1 I := 1
 STR R0,I
Loop LDR R0,I While I <= N Do
 LDR R1,N
 CMP R0,R1
 BGT Done
 LDR R0,Total Total := Total + I
 LDR R1,I
 ADD R0,R0,R1
 STR R0,Total
 LDR R0,I I := I + 1
 ADD R0,R0,#1
 STR R0,I
 B Loop End_While
Done …

The major problem with this code is that it takes no advantage from the fact that
many values loaded from or stored into memory are already present in one or more of the
registers. If, instead, we write the code so that values are left in the registers and stored
into memory only after the final results are computed, then most of the unnecessary data
movement will be eliminated. In this version, Total is kept in R0, N in R1, and I in
R2:

 MOV R0,#0
 MOV R2,#1
 LDR R1,N
Loop CMP R2,R1
 BGT Done
 ADD R0,R0,R2
 ADD R2,R2,#1
 B Loop
Done STR R0,Total

One problem with this code is that there are two branches in the loop; one
conditional and the other unconditional. If we can guarantee that N is greater than zero as
a precondition for running this code, then checking for the exit condition at the top of the
loop is unnecessary during the first pass. By rewriting the code as a repeat-loop instead
of a while-loop, the exit condition moves to the bottom of the loop.

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The repeat-loop code expressed in high-level form is as follows:

Total := 0 ;
I := 1 ;
Repeat
 Total := Total + I ;
 I := I + 1 ;
Until I > N ;

In assembly language, this turns into:

 MOV R0,#0
 MOV R2,#1
 LDR R1,N
Loop ADD R0,R0,R2
 ADD R2,R2,#1
 CMP R2,R1
 BLE Loop
 STR R0,Total

This version has a single conditional branch and four instructions inside the loop
instead of five, so it will run a little faster than the previous version. In general, writing
repeat-loops in assembly code is more efficient and simpler than writing while-loops.

By looking at the task we are performing, we notice that it does not matter to the
algorithm if we start counting at 1 and count up to N, or start at N and count down to 1.
By counting down, we can exploit the program status register flags (the Z bit in
particular) to detect when the loop is to terminate. In addition, we need not have a
register reserved specifically for counting; we can initialize one register to the initial
value of N and count it down to zero (i.e., there is no need for an “I” variable). The
resulting code is as tight as it is possible to be:

 MOV R0,#0
 LDR R1,N
Loop ADD R0,R0,R1
 SUBS R1,R1,#1
 BNE Loop
 STR R0,Total

Notice that there is an S suffix on the SUB instruction. The suffix causes the
result of the subtraction to modify the status bits in the program status register. The last
valid value in R1 is 1; when R1 is decremented to zero the Z bit is set and the BNE
branch fails. Omitting the S suffix prevents the status bits from being ever modified, and
the loop will run forever! (Adding an S suffix to the ADD instruction is unnecessary, but
doing so does not “hurt” the code other than making it somewhat more difficult to read.
Any flags modified by an ADDS instruction are completely undone by the SUBS
instruction on the very next line.)

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

While the code that was generated in the previous step is as good as it can get for
the problem as it is stated, the presence of the loop always guarantees that this is an O(N)
algorithm. The time to solve the problem grows linearly as N increases. By going back
to the original problem and examining it closely, we realize that we can recast the
problem as an O(1) algorithm. Mathematically, adding all integers between 1 and N can
be computed directly by the equation N×(N+1)÷2. In the equivalent code that follows,
every instruction is executed exactly once:

MOV R0,N R0 := N
ADD R1,R0,#1 R1 := N+1
MUL R2,R0,R1 R2 := N*(N+1)
MOV R2,R2,LSR #1 R2 := N*(N+1) Div 2
STR R2,Total

There is no integer division instruction on the ARM, but most of the arithmetic
instructions allow for the last operand to be shifted left or right before it is used. In the
MOV instruction, the value in R2 is shifted right by one bit (i.e., divided by 2) before it is
moved back into R2.

(As an aside, the shifter can be used to do quick multiplication by special
constants without using the MUL instruction. For example ADD R0,R0,R0,LSL #2
multiplies R0 by 5 in place by adding R0 to R0×4, e.g., R0 shifted left 2 places. The
shifter will be covered in more detail in a later lecture.)

In this section we’ve used a simple sample problem to show how to write basic
ARM assembly language, optimize that code to reduce the number of registers, and
reduce the number of instructions executed inside loops. By recognizing that a different
computational method generates the same desired result we may be able to write even
better assembly code.

	Lecture #7 – February 11, 2004
	A Worked Problem for the ARM

