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Lecture #5 – February 6, 2004 

Status Flags, Conditional Execution, & Binary 
Status Flags and Conditional Execution 

Four status bits in the program status register (PSR) are set or cleared as a result 
of executing other instructions.  Arithmetic instructions (such as ADD, SUB, AND, ORR, 
etc.) normally do not affect the status bits without a special notational tag.  Appending an 
S to the end of each (writing ADD as ADDS and SUB as SUBS, for example), forces the 
instruction results to change the status bits appropriately.  The four comparison 
instructions CMP, CMN, TST, and TEQ automatically set the status bits appropriately and 
do not require the S suffix.  Instructions to load and store registers to and from memory 
never change the status bits. 

The four status bits used by the conditional checks are Z (zero), N (negative), V 
(overflow), and C (carry).  For any instruction form that affects the status bits, the Z flag 
is set to 1 if the result of the instruction is exactly zero and is cleared to 0 if the result is 
any other value.  The N flag is set to 1 if the numeric result can be interpreted as negative, 
and is cleared to 0 if the numeric result is “not negative” (positive or zero).  The V flag is 
set to 1 if an addition or subtraction results in an overflow condition (the sum of two 
positive numbers is negative, for example), and is cleared to 0 if no overflow occurs.  The 
C flag is the carry bit, and is the “33RD bit” of an addition or subtraction.  The C flag is 
added into the sum in an ADC (add with carry), but not in a plain ADD instruction. 

The ARM is an unusual design in that every instruction may be conditionally 
executed.  There are 16 possible conditions, including “always” (no condition) and 
“never” (which is never actually used, but is a code reserved for expansion in future 
versions of the chip).  The remaining 14 conditions test the Z, N, V, and C status bits, 
either singly or in combination.  These 14 conditions are indicated by a two-letter code, 
appended to the end of any instruction requiring conditional execution.  The two-letter 
code is omitted when the instruction must always be executed.  If an instruction requires 
conditional execution and must also set the status flags as a result, the condition code is 
appended first, followed by the S.  The eight two-letter codes that test single flag bits are 
shown below: 
 

CODE TEST MEANING    
EQ Z=1 Equal (to Zero) 
NE Z=0 Not Equal 
CS C=1 Carry Set 
CC C=0 Carry Clear 
MI N=1 Negative 
PL N=0 Positive or Zero 
VS V=1 Overflow 
VC V=0 No Overflow 

Page 1 of 5 



CMPSCI 201 – Spring 2004 – © Professor William T. Verts 

The remaining two-letter codes that use multiple flags are shown below: 
 
CODE TEST    MEANING    ______ 
HI ((NOT C) OR Z)=0 Unsigned Higher 
LS ((NOT C) OR Z)=1 Unsigned Lower or Same 
GE (N EOR V)=0  Signed Greater Than or Equal 
LT (N EOR V)=1  Signed Less Than 
GT (Z OR (N EOR V))=0 Signed Greater Than 
LE (Z OR (N EOR V))=1 Signed Less Than or Equal 

Example 

Consider the ADD instruction as an example.  By itself, the ADD opcode means to 
always perform the addition.  By adding the CS condition suffix, the ADDCS opcode 
means to perform the addition only if C=1 (i.e., if the carry status bit is set to 1).  
Appending the S to create ADDS means that the result of the unconditional addition must 
modify the status flags.  The opcode combination ADDCSS performs the addition only if 
C=1, but also modifies the status bits afterwards (of course, the instruction doesn’t 
modify the status bits if it isn’t executed). 

Conditional execution allows the assembly language programmer to create very 
compact code for certain high-level structures.  Consider the following If-Then-Else 
pseudo-code structure: 

 
If Z=1 Then 
 R0 := R0 + 1 
Else 
 R0 := R0 – 1 ; 

In “traditional” assembly languages, this must be written as two independent 
blocks of isolated code, with jumps placed so that only one of the blocks is ever executed.  
By using conditional execution, the ARM code to perform the same task requires only 
two lines: 

 
ADDEQ  R0,R0,#1 If Z=1 Then R0 := R0 + 1 
SUBNE  R0,R0,#1 If Z=0 Then R0 := R0 - 1 

It is important to realize that for this construction to work correctly these two 
instructions must not also set the status flags.  If the first instruction is written as 
ADDEQS, executing the code fragment when Z=1 causes Z to reflect the result of the 
addition; in all cases where the sum isn’t zero the subtraction will be performed as well!   
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Binary Representations 

A decimal number such as 1204 is really shorthand for the following expansion: 

1×103 + 2×102 + 0×101 + 4×100 

A binary number has a similar expansion, but uses powers of 2 instead of powers 
of 10.  For example, the binary number 110101 is shorthand for the following expansion: 

1×25 + 1×24 + 0×23 + 1×22 + 0×21 + 1×20 
 
By reducing out the powers, this expression can be rewritten as: 

1×32 + 1×16 + 0×8 + 1×4 + 0×2 + 1×1 
 
All digits in binary are either 0 or 1, so reducing out the multiplications is trivial: 

32 + 16 + 0 + 4 + 0 + 1 
 
Computing the final sum gives us 53, which is the decimal equivalent to the binary 
number 110101.  Any binary number can be converted into its decimal equivalent by 
using the same technique.  Enumerating all possible binary patterns in 32 bits gives us 
over four billion results: 
 
 00000000000000000000000000000000 = 0 
 00000000000000000000000000000001 = 1 
 00000000000000000000000000000010 = 2 
 00000000000000000000000000000011 = 3 
 00000000000000000000000000000100 = 4 
 00000000000000000000000000000101 = 5 
    …     … 
 11111111111111111111111111111100 = 4,294,967,292 
 11111111111111111111111111111101 = 4,294,967,293 
 11111111111111111111111111111110 = 4,294,967,294 
 11111111111111111111111111111111 = 4,294,967,295 

This is a little too large a workspace to use as a teaching tool, so most people cut 
this down a bit!  For all intents and purposes, we can cover the same topics and concepts 
using four bits instead of 32, and we can examine all possible behaviors and 
combinations of behaviors.  With four bits, there are exactly sixteen distinct unsigned 
binary patterns to consider (24=16): 

 
0000 = 0 
0001 = 1 
0010 = 2 
…  … 
1111 = 15 
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The next binary pattern after 1111 (decimal 15) is 10000 (decimal 16), but 
since that pattern requires five bits instead of four we can legitimately say that 
1111+1=0000.  Thus, we can write all such binary numbers around the rim of a wheel: 

 

By this diagram we can see that while 1111 is equal to decimal +15, it can also 
be considered as -1 at the same time.  By counting counterclockwise, we label all 
negative numbers until we have an equal number of negatives as positives.  All such 
negatives share the common characteristic that the leftmost bit equals 1.  Examining the 
leftmost bit is how we determine if a signed binary number is either positive or negative, 
so 0000 is considered to be positive.  With the special pattern 1000, considered 
negative, we have one more negative number than we have positives.  In the result of an 
arithmetic instruction, the leftmost bit of the result is used to set or clear the N status bit. 

Now, adding +5 to +4 (counting clockwise from zero) we get +9 if we treat all 
numbers as unsigned integers.  At the same time, adding +5 to +4 gives us -7 if we treat 
all numbers as signed integers; this is a signed overflow condition for signed arithmetic.  
When a signed overflow is detected the V status bit is set to 1, but if the result is valid 
under signed arithmetic the V bit is cleared to 0.  Signed overflows happen when the 
boundary between +7 and +8/-8 is crossed, in either direction (adding two positives and 
getting a negative result, or adding two negatives and getting a positive result). 

In unsigned arithmetic adding +10 to +7 normally gives us +17 (binary 10001), 
but in four bits it results in binary 0001 (decimal +1) with the carry bit set to 1.  Thus, in 
addition setting C=1 indicates an unsigned overflow condition.  Unsigned overflows, 
involving the carry bit, happen when the boundary between +15 and 0 is crossed. 

Consider the example that adds 1010 to 1001.  The true binary result is 10011.  
In our 4-bit situation, the 4-bit result is 0011, and C is set to 1.  At the same time, Z is 
cleared to 0 (the answer isn’t exactly 0000), N is cleared to 0 (0011 is considered to be 
positive because its leftmost bit is 0), and V is set to 1 (two negative numbers, -6 and -7, 
were added together and the result is positive). 
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In this example, the C, V, and N bits are either examined or ignored according to 
the interpretation of the numbers.  If the numbers are unsigned, C is meaningful but V and 
N are ignored as meaningless.  The situation is reversed if the numbers are considered to 
be signed.  Regardless of the interpretation, the Z, C, V, and N bits are all set or cleared by 
the addition instruction according to their respective rules.  It is the job of the 
programmer to determine which bits to use and which to ignore. 

Conclusions 

The situation with respect to the Z, C, V, and N bits is identical in the ARM to our 
4-bit example, just extended to 32 bits.  When instructions are configured to modify the 
status bits, all 32 bits must be zero for the Z bit to be set to 1, and the leftmost of those 32 
bits contains the sign information for use by the N and V bits.  A carry out of bit 32 goes 
to the C bit.   

In the ARM an ADD instruction adds just its two 32-bit operands, but an ADC adds 
the two operands and the current value of the carry bit.  Both produce a 32-bit sum, and 
the 33RD bit, 0 or 1, becomes the new value of C if the instruction is configured to modify 
the status bits (ADDS or ADCS). 
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