
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #4 – February 4, 2004

Introduction to the ARM Architecture
Registers

The ARM (Advanced Risc Machines) chip comes in several versions, but the one
that we will use in this class is one of the more common, and more powerful, variants. It
has sixteen 32-bit integer registers, named R0 through R15, twelve of which are
considered to be “general purpose” registers. The other four have special uses: R15 is
the program counter, R14 is the link register (used by subroutines, which we will
discuss later), R13 is the stack pointer, and R12 is the “instruction pointer” register, also
used by subroutines. The special uses of R13, R14, and R15 (also named SP, LR, and
PC, respectively) are enforced by the hardware, but R12 (named IP) is used as the
instruction pointer only by agreed-upon programmer’s conventions and has no hardware
enforcement on its use.

The ARM chip also has eight floating-point registers for use in single precision
or double precision arithmetic, but we will not consider those registers at this time.

In comparison to the 6502 and the 8088, having 16 general purpose registers may
seem like a luxury, but as we will see no one ever has enough registers! On the 8088,
arithmetic may be performed between two registers, between a register and a memory
location, or between a memory location and a register (all operand pairs must be the same
size). On the ARM, however, arithmetic is always performed between registers, and
never involves a memory location. The only instructions that reference memory are
instructions that load a register (or several registers) from memory, or store a register (or
several registers) into memory.

Instructions and Addressing

The ARM can address 232 bytes (4 gigabytes) of memory, so absolute memory
addresses are 32 bits in length. Instructions are always 32 bits (4 bytes) in length, and
must be aligned to addresses divisible by 4. Variables in memory that occupy four bytes
must also be aligned to addresses divisible by 4. In general, assemblers will insure that
instructions and data are so aligned, thus relieving the programmer of one more worry.
There are only forty or so unique instruction mnemonics, depending on the version of the
ARM chip.

Having both 32-bit addresses and 32-bit instructions leads to the situation where
an absolute address cannot fit into any instruction (and neither can all possible constant
values). Instead, absolute addresses are either stored in a register or the offset relative to
some register is stored as part of an instruction. We will look at both of these cases at
some point in the future.

Page 1 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The LDR instruction loads a 32-bit register from a 32-bit memory location (called
a word on the ARM), and STR stores a register into memory. For example, LDR R0,A
loads R0 from memory at the address indicated by symbol A, and STR R3,B stores the
contents of R3 into memory at the address indicated by symbol B. Supposedly, you can
choose whether variables are to be represented in memory in little-endian or in big-
endian form, but all the ARM software I’ve seen so far uses little-endian exclusively.
There are LDRB and STRB instructions that load and store individual 8-bit bytes, and on
recent versions of the ARM chip there are also LDRH and STRH instructions to load and
store 16-bit half-words. Words in memory must be aligned to addresses divisible by 4,
and half-words must be aligned to addresses divisible by 2.

Arithmetic Instructions

There are sixteen “basic” arithmetic instructions. (On some versions of the ARM
chip there are a few other special instructions, including several different integer
multiplication instructions, but those will not be considered here. There are no integer
division instructions at all.) The sixteen basic arithmetic instructions are:

ADD – Add without Carry Dest := Op1 + Op2
ADC - Add with Carry Dest := Op1 + Op2 + C
SUB - Subtract without Carry Dest := Op1 - Op2
SBC - Subtract with Carry Dest := Op1 - Op2 + C - 1
RSB – Reverse Sub w/o Carry Dest := Op2 - Op1
RSC - Reverse Sub with Carry Dest := Op2 - Op1 + C - 1
AND - Logical AND Dest := Op1 AND Op2
ORR - Logical OR Dest := Op1 OR Op2
EOR - Logical EOR Dest := Op1 EOR Op2
BIC - Bit Clear Dest := Op1 AND (Not Op2)
CMP - Compare Op1 - Op2
CMN - Compare Negative Op1 + Op2
TST - Bit Test Op1 AND Op2
TEQ - Test Equal Op1 EOR Op2
MOV - Move Dest := Op2
MVN - Move Negative Dest := Not(Op2)

In all of these instructions, the destination (Dest) and the first operand (Op1)
must be one of the sixteen registers. The second operand (Op2) may be a register,
possibly shifted in some way, or a constant, also called an immediate value. As each
such instruction contains two operands and a destination (possibly all the same register)
the ARM is considered to be a three address machine.

In ARM assembly language, the destination register is always written first. The
instruction ADD R4,R2,R7 means R4 := R2 + R7, and ADD R0,R0,#1 means
R0 := R0 + 1, where # indicates the presence of a constant value embedded into the
instruction rather than a register name. The instruction ADD R0,R0,R0 adds R0 to
itself and puts the result back into R0.

Page 2 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

The SUB (subtract) and RSB (reverse subtract) instructions differ only in which of
the two operands is subtracted from the other. As an example, SUB R2,R4,R7 means
R2 := R4 – R7, but RSB R2,R4,R7 means R2 := R7 – R4. You might think
that the reverse subtract instruction is not really needed, since you can rewrite the
example using the regular subtract instruction as SUB R2,R7,R4, but because second
operands may be constants (as well as other special forms) the reverse subtract is both
useful and convenient. For example, RSB R2,R4,#1 means R2 := 1 – R4, which
cannot be done with a regular subtract instruction without first placing the constant 1 into
an otherwise unused register.

The logical instructions AND, ORR, and EOR all perform bit-wise Boolean
operations on all 32 bits of their operands, in parallel. For AND, a bit in the result will be
1 only if both operand bits are equal to 1, and will be 0 if either or both operand bits are
0. For ORR (inclusive OR) a bit in the result will be 1 if either or both operand bits are 1,
and will be 0 only if both operand bits are 0. For EOR (exclusive OR) a bit in the result
will be 1 if the operand bits are different, and will be 0 if the operand bits are the same.

The four instructions CMP, CMN, TST, and TEQ have no destination for their
results. The CMP instruction is identical to the SUB instruction, CPN is identical to ADD,
TST is identical to AND, and TEQ is identical to EOR, except that in each case the result
of the computation is discarded. Discarding the results may seem silly, but before each
result is discarded it is used to set one or more of the status flags in the program status
register, or PSR. These status flags are used to control the flow of a program with
conditional branch instructions, which will be covered in detail later. The remaining
twelve arithmetic instructions optionally may be used to set the status flags, or not, as a
side effect of the instructions and under the choice of the programmer.

Example

We can approach the problem of adding two memory variables together and
storing the result back into memory, as in the high-level instruction c := a + b, in
just a few ways, as shown below:

 LDR R0,A LDR R0,A LDR R0,A
 LDR R1,B LDR R1,B LDR R1,B
 ADD R2,R0,R1 ADD R0,R0,R1 ADD R1,R0,R1
 STR R2,C STR R0,C STR R1,C

The forms differ only in their use of the registers. The form on the far left uses
three separate registers, necessary if the two original operands are to be used in other

Page 3 of 4

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 4 of 4

calculations. The forms in the middle and on the right minimize the use of the registers
by putting the sum back into one of the operand registers. These forms are preferred if
the operands are not to be used in other calculations.

Conclusions

The ARM is a register-intensive chip. As we will learn over the next few
lectures, much of the task of programming the ARM involves knowing what information
is in which register, how to use the special registers R12 through R15, and what
instruction addressing modes simulate which functions from a high-level language.

	Lecture #4 – February 4, 2004
	Introduction to the ARM Architecture
	
	Registers
	Instructions and Addressing
	Arithmetic Instructions
	Example
	Conclusions

