
CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Lecture #3 – February 2, 2004

The 8088 Architecture
In stark contrast to the 6502 architecture is that of the Intel 8088, released in

1978. The 8088 (and all of its successors, such as the 286, 386, 486, and Pentium series)
uses a very different set of registers and a different approach to programming from that of
the 6502.

Registers

In the 6502 there is a single 8-bit accumulator, used by default in most
instructions, as well as two index registers with more limited uses than the accumulator.
In the 8088 there are eight more-or-less general purpose 16-bit registers, some with more
accumulator-like functionality than others. These registers are called AX, BX, CX, DX,
SP, BP, SI, and DI. In the earlier 8-bit Intel 8080 processor, vintage 1974, there were
four 8-bit registers called A, B, C, and D. In an attempt to keep the 8088 marginally
compatible with the 8080, registers AX, BX, CX, and DX can be accessed by each half
independently from the other half. Thus, the 16-bit AX register is composed of two 8-bit
halves, AH (high byte) and AL (low byte). The SI and DI registers are used primarily in
instructions that deal with long strings of bytes that need to be moved from one block in
memory to another. The BP register is used in subroutines and arrays, and SP is the stack
pointer.

Remember that the 6502 is a one-address machine, because an instruction such as
ADC (add with carry) implicitly uses the single accumulator as part of the calculation and
requires only a single address to an operand in memory. In contrast, the 8088 is a two-
address machine. In an instruction such as ADD, a programmer must tell the 8088 not
only one of the source operands, but also the destination of the result. The destination is
used as the second source operand. For example, the instruction ADD AX,Temp means
that the AX register and the contents of memory variable Temp are added together and
the result is stored back into the AX register. In a high-level pseudocode, this is written as
AX := AX + Temp. Similarly, ADD Temp,AX means Temp := Temp + AX. It
is fairly unusual for an instruction set to allow the destination of a calculation to be in
main memory. In the 8088, both source and destination can be either a register or a
memory location, but they can’t both be memory locations at the same time.

Page 1 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

(In the Computer Organization book the notation is backwards from that used on
the 8088. An instruction such as ADD AX,BX is interpreted as AX := AX + BX on
the 8088, but it would be interpreted as BX := AX + BX in the book.)

The assembler takes care of determining whether an instruction is a 16-bit or an 8-
bit instruction, based on which registers are used. (In ambiguous cases the programmer
must specify explicitly whether to use 8-bit or 16-bit operands.) For example, the
following instructions all refer to 16-bit quantities:

ADD AX,BX (add BX to AX),
ADD AX,1 (add 16-bit constant 1 to AX)
ADD AX,Temp (add 16-bit memory variable Temp to AX)
ADD Temp,AX (add AX to 16-bit memory variable Temp)

but the following instructions all refer to 8-bit quantities:

ADD AH,BL (add BL to AH, ignoring both BH and AL)
ADD AH,1 (add 8-bit constant 1 to AH, ignoring AL)
ADD AH,Temp (add 8-bit memory variable Temp to AH)
ADD Temp,AH (add AH to 8-bit memory variable Temp)

Note that without any extra information about variable Temp, the instructions
ADD AX,Temp and ADD AH,Temp are both legal; the first picks up two bytes from
memory (the byte referenced by Temp and the one following, using little-endian byte
order), while the second picks up but a single byte (just the byte referenced by Temp).
The following instructions are illegal because they mix 8-bit and 16-bit quantities, and
are flagged as errors by assemblers:

ADD AX,BL (Illegal: AX is 16 bits, BL is 8 bits)
ADD DH,BX (Illegal: DH is 8 bits, BX is 16 bits)
ADD CL,1000 (Illegal: CL is 8 bits, constant 1000 will fit
 into 16 bits but not into 8 bits)

Addressing

Memory addressing on the 8088 is convoluted. With a 16-bit address register
only 65,536 bytes (216=64K) of memory can be addressed, and the 8088 is primarily a
16-bit processor. The 8088 can access up to 1,048,576 bytes (1 megabyte) of memory,
thus requiring 20 bits of address to do so (220=1,048,576). The solution selected by Intel
is to add two 16-bit registers together for each such 20-bit address, one register offset to
the left by four bits. The left-shifted register is called a segment register, and the
unshifted register is the offset.

Page 2 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

There are four segment registers on the 8088, called DS, CS, SS, and ES. From
the way that addresses are formed, each segment register points at a 64K block of
memory. The DS register points at the data segment, used to contain data variables. The
CS register points at the code segment, used to contain the currently running section of
code. The SS register points at the stack segment. The ES register points at the “extra”
segment, used explicitly by a few instructions, but mostly used as temporary storage for
segment addresses.

The processor uses the CS segment register automatically when it fetches an
instruction from memory, it uses the DS segment register automatically when it fetches a
datum from memory, and it uses the SS segment register automatically when it pushes
values onto or pops values from the stack.

Segment registers may point at overlapping blocks of memory. What happens to
the segment registers defines the major difference between .COM programs and .EXE
programs in the old MS-DOS world. In .COM files, the CS, DS, and SS segment
registers all contain the same value and generally are not allowed to change, and the
entire program must fit into one 64K block. Such programs are relatively easy to write,
even in assembly language, as the programmer need not worry about ever changing the
segment registers once they are properly initialized. The downside, of course, is that the
entire program must fit into 64K. In contrast, .EXE programs allow segment registers to
point at different blocks of memory, and move them around during the execution of the
program in order to support large code sizes and large data blocks (up to all available
memory). It is the responsibility of the assembly language programmer to maintain those
segment registers properly.

Instruction Symmetry

Many registers are used in the same way as other registers of the same class; they
are considered to be symmetric instructions. For example, the ADD (simple addition) and
ADC (add with carry) instructions may add together any two 16-bit registers, any two 8-
bit registers, or any register and any memory location of the same size, in either order.
Similarly, the MOV (move data) instruction can move data values from any register
to/from any other register or memory location of the same size. These instructions
represent a high degree of symmetry.

On the 8088 symmetric instructions are the exception, rather than the rule. Many
instructions use specific registers in unique ways. For example, the 16-bit version of the
IMUL (integer multiply) instruction always multiplies the AX register by its operand.
Multiplication of two 16-bit values always generates a 32-bit result; the low order 16 bits
of the result always go back into AX and the high order 16 bits always go into DX. The
instruction is hard-wired to work this way, and you cannot perform multiplication into
any other result registers. Anything valuable in DX must be moved out of the way before
the multiplication takes place, either into memory or an unused register. If not, its value
will be lost.

Page 3 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Many other registers have special uses as well. The BX register is used as the
base address of an array in many instructions. For example, in the code below, the
variable Buffer points to the start of an array in memory. The first MOV instruction
moves the address offset of the memory variable into BX, instead of fetching the contents
of the first two bytes of the array from memory. The next MOV instruction fetches a byte
from memory into register AH, where the address of the byte fetched is in the BX register.
The BX register is incremented in order to step through the individual bytes of the array.

MOV BX, OFFSET Buffer
…
MOV AH,[BX]

Similarly, the CX register is most often used as a loop counter. Any register may
be used as a loop counter, but only the CX register has a special instruction called LOOP
that decrements its value and then jumps to a location if the result is not exactly zero.
The loop on the left (below) shows how to do a task ten times using explicit decrement,
compare, and jump instructions. This code may be written to use any register on the
8088, including CX. The loop on the right shows how much shorter the code will be with
the special instructions that use only the CX register.

 MOV CX,10 MOV CX,10
Top … Top …
 … …
 DEC CX LOOP Top
 CMP CX,0
 JNZ Top

Continuing asymmetries to a ridiculous extreme, the SI and DI registers are used
almost exclusively in special instructions that move data around in memory. To illustrate
this, we will show the MOVSB instruction, which moves a string of bytes from one place
to another. The instruction expects the source of the string to be defined by segment
register DS and offset SI, and expects the destination to be defined by segment register
ES and offset DI. Executing the instruction once copies one byte from
Memory[DS:SI] to Memory[ES:DI], and then it also increments both SI and DI by
1. Prefixing the instruction by the special code REP repeats the move and decrements CX
as many times as necessary until CX equals zero, thus copying up to 64K in one block. A
lot of preparation is necessary, but once everything is set up correctly the single
construction REP MOVSB does all of the following pseudocode steps:

 Repeat
 Memory[ES:DI] := Memory[DS:SI] ;
 SI := SI + 1 ;
 DI := DI + 1 ;
 CX := CX – 1 ;
 Until CX = 0 ;

Page 4 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

In the real 8088 code that follows, everything but the last line is used to set up the
registers specifically to use the special REP MOVSB combination:

 MOV AX,DS
 MOV ES,AX Copy DS into ES
 MOV CX,____ Number of bytes to move
 MOV SI,OFFSET ____ Offset of Source block
 MOV DI,OFFSET ____ Offset of Destination

 REP MOVSB Do it all!

Instructions on the 8088 are between one and twelve bytes in length, and vary
widely in execution time. In particular, the time used by the REP MOVSB construction
depends almost entirely on the contents of the CX register, between one byte-move and
65,536 byte-moves, and may dominate the execution time for some blocks of code.

Example

For an example we will write the 8088 assembly language code for the high-level
statement c = a + b, using multiple precision arithmetic just as we did in the previous
lecture on the 6502. In the data area, referenced by the DS segment register, we define
the variables for 4-byte integers as follows, and change the SIZE definition for a
different number of bytes (there are better ways to do this, by the way):

SIZE EQU 4 Size of variables
START EQU 0 Start of Data Segment
A EQU START Offset into DS of A
B EQU A+SIZE Offset into DS of B
C EQU B+SIZE Offset into DS of C

The code to add the two multibyte numbers uses all of the tricks we’ve introduced
so far. The CX register will be used as the loop counter, but instead of counting the
number of 8-bit bytes added it will count the number of 16-bit words; this is why it is
initialized to half the SIZE value (this computation is performed at assembly time since
the value of SIZE is known, not at run time). As described earlier, the LOOP instruction
decrements CX, and then branches to label Top if CX is not zero. The BX register will be
used as the index into each array, and must be incremented twice to get to each
successive two-byte word.

 MOV CX,SIZE/2 Number of words
 MOV BX,0 Offset into Array
 CLC Clear Carry
Top MOV AX,[BX+A] Load 16 bits of A
 ADC AX,[BX+B] Add 16 bits of B
 MOV [BX+C],AX Store 16 bits of C
 INC BX Increase BX to
 INC BX next word index
 LOOP Top Repeat until CX=0

Page 5 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Successors to the 8088

For completeness, some attention must be given to the descendants of the 8088
chip. Intel needed to make each new chip backwards compatible with all those that came
before it from the same family. Processors such as the 286, 386, 486, Pentium, Pentium
II, Pentium III, and Pentium IV each execute all programs written for earlier members of
the family, including the 8088. They also include their own quirks and capabilities.
While a Pentium IV will execute native 8088 code, it also allows for a much easier
approach to programming. Starting with the 386, data registers are now 32 bits in length
instead of 16. What was the 16-bit AX register in the 8088 is now the 32-bit EAX register,
but the AX, AH, and AL sections of EAX are still available to programmers. Although
segment registers are still present, all address registers (both segment and offset) are also
32 bits in length. Everywhere in the four gigabyte address space (232 bytes) can be
referenced without changing a segment register.

Our multibyte addition code on a 386 or later is similar to what we saw before,
but we can now reference and add four bytes at a time instead of only two. The data area
is unchanged, but the executable code is now written as follows:

 MOV ECX,SIZE/4 Number of quads
 MOV EBX,0 Offset into Array
 CLC Clear Carry
Top MOV EAX,[EBX+A] Load 32 bits of A
 ADC EAX,[EBX+B] Add 32 bits of B
 MOV [EBX+C],EAX Store 32 bits of C
 INC EBX Increase EBX to
 INC EBX next quad index
 INC EBX
 INC EBX
 LOOP Top Repeat until ECX=0

The assembly language programmer must examine the code closely and decide if
the four INC EBX instructions should be left alone or replaced by a single ADD EBX,4
instruction. One of the two will occupy fewer bytes than the other, and one will run
faster than the other. Programmers will choose the solution that matches their
requirements the best, whether for speed or for space. The optimal situation occurs in
cases where the smallest code is also the fastest, but that does not happen all the time. If
we are interested in four byte integers only (variables A, B, and C each have four bytes
reserved in the data area), the code is trivial since no loop will be required:

 MOV EAX,A
 ADD EAX,B
 MOV C,EAX

Page 6 of 7

CMPSCI 201 – Spring 2004 – © Professor William T. Verts

Page 7 of 7

Conclusions

The lack of symmetry and special rules for certain instructions means that the
8088 assembly language programmer has a very difficult time designing programs to take
advantage of the fancy features of the processor and avoid unnecessary data movement at
the same time. The 8088 is considered a CISC design, or Complex Instruction-Set
Computer. For each of the “special” instructions such as MOVSB one must wonder if the
complexity required by the processor to implement it and the amount of preparation a
programmer must perform in order to use it are adequately balanced by the average
number of times it will be seen in any application program. If a complex instruction is
used only rarely, and if equivalent tasks can be performed as easily with simpler
instructions, then perhaps it should not be present in the instruction set at all.

Many people have asked these same questions and concluded that the instruction
set of a processor must include only simple instructions, and only those which are
absolutely necessary to any program. Such RISC, or Reduced Instruction-Set
Computers, typically contain a very small number of very simple instructions. Those
instructions, because of their simplicity, are executed very quickly by the processor.
They also make the hardware design of RISC processors reasonably straightforward, and
because they are few in number the entire instruction set for a RISC design is much more
easily learned by assembly language programmers than that for a CISC design. As we
will see in the next lectures, the ARM processor is one such RISC machine.

	Lecture #3 – February 2, 2004
	The 8088 Architecture
	
	Registers
	Addressing
	Instruction Symmetry
	Example
	Successors to the 8088
	Conclusions

