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Lecture #2 – January 30, 2004 

The 6502 Architecture 
In order to understand the more modern computer architectures, it is helpful to 

examine an older but quite successful processor architecture, the MOS-6502.  The 6502 
was released in 1975, and was the main processor in the KIM-1, Apple ][, AIM-65, and 
other microcomputers from the late 1970s into the 1980s.  The 6502 is strictly an 8-bit 
architecture, with a single 8-bit accumulator register, and can access a maximum of 64K 
bytes of random access memory.  Memory addresses are exactly 16 bits in length, 
because 216 = 65536 = 64K.  Valid addresses range from 0 up to 65535.  The 6502 is 
called a one address machine because instructions can reference at most one address at a 
time, and most of those instructions use the accumulator implicitly (without the 
programmer specifying it directly). 

As the 6502 is a byte-oriented machine, absolute addresses are two bytes in 
length, with the upper byte of the address representing the page of memory being 
accessed, and the lower byte the offset within that page.  The entire 64K address space is 
treated as 256 pages of 256 bytes per page (256×256=65536).  Instructions that reference 
memory typically use two-byte addresses to access any byte anywhere in the address 
space, but special one-byte addresses are also used to address the very first page by 
assuming the upper byte of the address to be zero (page 0).  Page 0 is used to contain 
frequently referenced variables in order to save space in the program code.  Page 1 is 
hardwired by the processor to be used as the stack, and is not used by programmers for 
any other purpose.  The code for user programs often starts in page 2. 

At the high end of memory, the last six bytes of the last page (page 255) of 
memory are used by the hardware to contain special addresses.  Two of these addresses 
are for interrupts (called IRQ and NMI, which we will discuss later) and one is for the 
reset function.  When the processor is first turned on and/or reset, the hardware uses the 
reset address to know where to start running code.  Those last three addresses (six bytes) 
in memory, along with the program code to which they jump, must always contain valid 
information, even when the machine comes up from a “dead” state.  Those areas of 
memory must be occupied by ROM (read only memory).  ROM, unlike most RAM, does 
not lose its contents when the power is off. 

Therefore, in 6502-based systems the lower addresses (particularly pages 0 and 1) 
must contain RAM and the upper addresses (particularly page 255) must contain ROM.  
ROM code usually contains whatever passes for an operating system on that computer; 
often a very primitive OS.  How much RAM and ROM is present beyond the basic 
requirements is a decision of the system designer, but many systems have “holes” in the 
address space where neither RAM nor ROM are present.  Storing a value into one of 
these holes does nothing useful.  Retrieving a value from one of these holes often results 
in garbage values being returned.  (We have not yet talked about how input or output 
tasks are performed, but some holes in memory can be filled with special devices called 
ports, which allow those functions.) 
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The 6502 has one main 8-bit accumulator register and two auxiliary 8-bit index 
registers called X and Y.  The index registers are often used as array subscripts when 
referencing memory. 

Instructions are one, two, or three bytes in length.  The first byte in memory of 
any instruction is a number called the operation code, or OpCode, which tells the 
processor what kind of instruction is being loaded.  Once the processor has the OpCode it 
knows whether or not it must fetch the next byte or the next two bytes from memory in 
order to complete the instruction, or whether it has all the information it needs already.  
Instructions are laid out linearly in memory one after the other; the first byte after any 
instruction contains the OpCode of the next instruction to be executed. 

For example, the instruction LDA 1234 means load the accumulator from the 
byte in memory at absolute address 1234 (expressed in base 16, or hexadecimal).  The 
numerical code for LDA when used with a complete 16-bit address is the hexadecimal 
value AD, so the instruction will be laid out in memory as follows: 

 

The order in which addresses (or multibyte numbers) are split across individual 
bytes in memory is called the endian.  In little endian the lowest byte of a number is 
stored at the lowest address in memory and the highest byte is at the highest address.  In 
big endian the order is reversed, with the highest byte of the number at the lowest 
address.  As you can see, the 6502 processor stores addresses in little endian format.  All 
Intel processors (the 8088, the 486, the Pentium, etc.) use little endian format.  Motorola 
processors (such as the 68000 used in the original Mac) use big endian format.   
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Little endian format makes the most sense for the 6502 because instructions that 
reference bytes in page 0 use only the offset into page 0 and can omit the page number.  
For example, the LDA 34 instruction references address 0034 (page 0, offset 34), and is 
only two bytes in length instead of three.  The 6502 tells the difference between similar 
instructions by their OpCode numbers: LDA from a 16-bit absolute address has OpCode 
AD, while LDA from page 0 has OpCode A5.  In both cases the byte after the OpCode is 
the low-order byte of the address (little endian).  Page 0 instructions stop there, but if the 
instruction uses a 16-bit address the processor must make one more fetch to get the high 
byte (page number) of the address before it can execute the instruction. 

In a high-level language we might write a statement such as C = A + B to add 
two 32-bit (4 byte) numbers together.  For an 8-bit machine such as the 6502 this means 
adding only one byte of each pair of operands at a time, storing the result in the correct 
byte of the answer, and repeating the process a total of four times. 

If we know that the storage for variable A will start at absolute memory location 
1234 (hexadecimal), then all four bytes will occupy locations 1234, 1235, 1236, and 
1237.  Similarly, variable B will occupy locations 1238, 1239, 123A, and 123B, and 
variable C will occupy locations 123C, 123D, 123E, and 123F.  So, the 6502 code to add 
the two numbers together in little endian format will be: 
 

CLC   Clear carry bit    
LDA 1234  Load lowest byte of A 
ADC 1238  Add lowest byte of B 
STA 123C  Store into lowest byte of C  
LDA 1235  Load next byte of A 
ADC 1239  Add next byte of B 
STA 123D  Store into next byte of C  
LDA 1236  Load next byte of A 
ADC 123A  Add next byte of B 
STA 123E  Store into next byte of C  
LDA 1237  Load highest byte of A 
ADC 123B  Add highest byte of B 
STA 123F  Store into highest byte of C 

There is a special bit called the carry bit which allows multibyte additions such as 
these; the ADC instruction says “add with carry” so that a carry out of the sum of one pair 
of bytes is added to the sum of the next pair.  The carry bit must be zero (no carry) at the 
start of the process; hence the inclusion of the CLC (clear carry) instruction. 

While it will work, it is pretty terrible code.  It is hard to maintain and hard to 
understand.  Most assemblers accept a pseudo-instruction to define symbols, so we can 
use more meaningful addresses than pure numbers: 

 
A EQU 1234 
B EQU 1238 
C EQU 123C 
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The EQU symbol looks like an OpCode, but it is strictly an instruction to the 
assembler to associate the value 1234 with symbol A.  In most high level languages this 
would be considered a constant.  Our code to add two multibyte numbers together is then 
rewritten as the following: 

 
CLC   Clear carry bit    
LDA A 
ADC B  Add lowest bytes 
STA C         
LDA A+1 
ADC B+1  Add next bytes 
STA C+1         
LDA A+2 
ADC B+2  Add next bytes 
STA C+2         
LDA A+3 
ADC B+3  Add highest bytes 
STA C+3 

The code is still not perfect, but it is a lot easier to tell what is going on than 
before.  An instruction such as LDA A+1 is evaluated by the assembler to the same 
machine code as in the original example: since A is defined to be equal to 1234, then the 
instruction LDA A+1 is converted by the assembler into LDA 1235.  Note that this 
happens at assembly time, not at run time.  (The instruction LDA A is really the same as 
LDA A+0, but we would rarely write it that way.) 

Now consider what happens when we wish to change the code to add 8-byte 
numbers instead of 4-byte (or any other size).  We must change the addresses in the EQU 
pseudo-instructions, and we must also include enough LDA–ADC–STA groups to match 
the overall number of bytes being added.  This is dreadfully wasteful of program space; 
with only 64K bytes of memory every byte saved is a benefit. 

If, instead, you think of the variables A, B, and C as zero-based arrays of four 
bytes each, then the process that we really want to implement is similar to the following 
high level code (which ignores and omits the proper handling of any carries): 
 

X := 0 ; 
Repeat 
 C[X] := A[X] + B[X] ; 
 X := X + 1 ; 
Until X = 4 ; 

Changing the lengths of the array variables requires only that we change the 4 in 
the loop counter to the new length of the array.  By defining a symbol SIZE (initially 
equal to 4) and using SIZE wherever the array size is needed, we change the precision of 
our multibyte numbers by editing a single definition and reassembling the program. 
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In the 6502, the index registers X and Y are used to simulate the actions of an 
array.  For example, the instruction LDA A,X says to add the starting address of array A 
to the value in the X register, and use the result as the final address of the byte to load into 
the accumulator.  This happens at run time, not at assembly time.   

The X register must be initialized to zero, and must be compared to the index 
value which points one byte beyond the end of the arrays in order to know when to stop 
the loop.  In both cases the LDX instruction (load X register) and CPX instruction 
(compare X register) use immediate values instead of addresses; the purpose of the # 
symbol in the program text is to indicate that the value is a constant, not an address.   

The result of the CPX instruction is reflected in a status bit which is tested in the 
next instruction, which branches (jumps) to a location in the program if the test is met 
(i.e., if the contents of register X and the constant SIZE are not equal in value).  In the 
6502, branches cannot go to an arbitrary address in memory.  Instead, the distance 
between the instruction and the target of the branch is computed by the assembler, and 
the difference is stored as one byte in the branch instruction.  With one byte for this 
difference, the most distant destination can be no more than about ±127 bytes from the 
point of the branch.  In our final code below, the destination is the label called Loop, and 
the assembler determines if it is within range of the branch instruction (and will generate 
an error message if it is not).  The final code is as follows: 

 
SIZE EQU 4  Change this to set array size 
A EQU 1234  Starting address of variables 
B EQU A+SIZE B is SIZE bytes later than A 
C EQU B+SIZE C is SIZE bytes later than B 

 
 …   other stuff goes here 

 
CLC   Clear carry bit 
LDX #0  Set X register to zero 

Loop LDA A,X  Load accumulator from A[X] 
ADC B,X  Add accumulator from B[X] 
STA C,X  Store accumulator into C[X] 
INX   Increment X (e.g., X++) 
CPX #SIZE Compare X register to SIZE 
BNE Loop  Branch to Loop if not equal 

The final code is pretty complicated, but it is very general.  Changing our 
numbers A, B, and C from four bytes each to eight bytes each only requires that we 
change the SIZE constant and reassemble the program.  While the number of bytes in the 
data area will change as SIZE changes, the executable portion of the code stays exactly 
the same size (17 bytes).  Unfortunately, on the 6502 that’s as good as we can do.   

We will see with Intel and ARM chips that these tasks are simplified by using 
more (and larger) registers than those available on the 6502.  By studying the 6502 we 
have introduced a number of core concepts that we will visit again in other architectures. 
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