
CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

CMPSCI 201 – Fall 2006

Midterm #2 – November 20, 2006

SOLUTION KEY
Professor William T. Verts

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

<1> 10 Points – Trace the following circuit, called a “demultiplexer”, and show its outputs for
all possible inputs.

INPUT OUTPUT

DATA A1 A0 D3 D2 D1 D0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

 Note that DATA IN is attached as an input to all four AND-gates, so when it is 0 all outputs
must also be 0. You can only get non-0 outputs when DATA IN is 1. The AND-gates and
NOT-gates are set up so that of the four possible behaviors of A1 and A0 only one of the
AND-gates has its upper two bits equal to 1. Thus, the circuit always has at most one
output equal to 1, corresponding to the “address” on the A1 and A0 lines.

<2> 5 Points – Short Answer – How would (much larger) demultiplexer circuits be used with
2-dimensional grids of CMOS flip-flops? What can they do that is necessary for the
proper operation of a memory system? (It doesn’t matter if the flip-flops are 6-transistor
static cells or 1-transistor, 1-capacitor dynamic cells.)

 Larger demultiplexers also have the characteristic that only at most one output will ever
be 1. For N address lines (AN-1 … A0) there will be 2N outputs, only one of which can
ever be 1 at any time. This makes the circuit perfect for driving the Word Lines in a
memory grid, so that at most one row of memory bits is active at any time.

<3> 10 Points – Write a complete ARM subroutine to evaluate the integer quadratic
polynomial y = 7n2+4n-6, where n is passed in through R0 and the result is passed back
through R1. Make certain that your subroutine is completely transparent with respect to
any temporary registers that you might use. No solution should require more than ten
lines of code at the very most (my solution is considerably shorter).

 MUL R1,R0,R0 ; R1 R02 (N2)
 RSB R1,R1,R1,LSL #3 ; R1 8×R1 – R1 (7N2)
 ADD R1,R1,R0,LSL #2 ; R1 R1 + 4×R0 (7N2 + 4N)

SUB R1,R1,#6 ; R1 R1 – 6 (7N2 + 4N – 6)
MOV PC,LR ; Return from Subroutine

 Since all calculations were performed in the return register, no temporary registers
needed to be saved or restored.

– Page 1 –

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

<4> 25 Points – In a high-level language such as Pascal, I declare an array of 32-bit integers
with the statement Var A : Array [1..4,-3..12] Of Integer ; where the
first element of the array is at A[1,-3] and the last element of the array is at A[4,12].
There are four rows, indexed from 1 through 4, and sixteen columns, indexed from -3
through 12. In translating this array into ARM assembly language, I use the ARM
directive A % ___ to allocate and initialize to zero all elements of the array (you put the
number of bytes to allocate in the slot, such as A % 16 to allocate 4 words of memory).

(A) How many array cells and how many bytes of memory need to be allocated?

 4 rows × 16 columns = 64 array cells, which is 256 bytes.

(B) Write a minimal algebraic mathematical expression of the mapping function
from array indices R and C (row and column) onto the row-major offset into a
zero-based, 1-dimensional array of the correct number of elements (do not
compute the byte-offset into physical memory). Your answer must be a
polynomial f of the form Offset f(R,C).

 General Function = (R–1) × (12 – (-3) + 1) + (C + 3) = (R–1) × 16 + C + 3
 Minimal Function f(R,C) = 16 × R + C – 13

(C) Repeat part (B), but this time the minimal function must be for column-major
memory layout.

 General Function = (C – (-3)) × (4 – 1 + 1) + (R – 1) = (C+3) × 4 + R – 1
 Minimal Function f(R,C) = 4 × C + R + 11

(D) Using the row-major formula you developed in part (B), write the correct ARM
statements to load into register R0 the contents of A[R,C] where R is in register
R1 and C is in register R2. You do not need to perform range checking on R and
C. Compute the zero-based array index into register R3, and use the ADR pseudo-
instruction to put the address of array A into register R5.

 ADR R5,A ; R5 Address of A
 MOV R3,R1,LSL #4 ; R3 R×16
 ADD R3,R3,R2 ; R3 R×16 + C
 SUB R3,R3,#13 ; R3 R×16 + C – 13
 LDR R0,[R5,R3,LSL #2] ; R0 A[R3]

(E) Using row-major format, load into R0 the contents of A[2,5] using as few
ARM statements as possible. As in part (D), put the address of array A into R5.

 Using the formula 16×R + C – 13, where R=2 and C=5, we get array offset 24,
which is byte offset 96. Either of the following should work:

 ADR R5,A ADR R5,A+96
 LDR R0,[R5,#96] LDR R0,[R5]

– Page 2 –

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

<5> 15 Points – In some hypothetical high-level programming language (Ada is actually
pretty close) I can specify whether a parameter to a subroutine is call-by-value (IN), call-
by-return (OUT), call-by-value-return (IN OUT), or call-by-reference (VAR). Here you
see a subroutine definition using this form:

Subroutine Glop (IN P1:Integer ;

 VAR P2:Integer ;
 OUT P3:Integer) ;

 Translate each of the following high-level language calls into ARM assembly language,
showing both the prolog (setup code before the call that pushes parameters onto the
stack) and epilog (code after the call that pops parameters off of the stack). If the call
cannot be made due to violations in how parameters are used, tell me which parameters
are in error and why (i.e., “play compiler” and give me an appropriate error message).

 (A) Call Glop (5, X, Y) ;

 MOV R0,#5 ; Push value 5 onto stack
 STR R0,[SP,#-4]! ;
 ADR R0,X ; Push address of X onto stack
 STR R0,[SP,#-4]! ;
 SUB SP,SP,#4 ; Reserve one word on stack for Y
 BL Glop ; CALL SUBROUTINE
 LDR R0,[SP],#4 ; Pop OUT parameter Y
 STR R0,Y ;
 ADD SP,SP,#8 ; Discard value and var parameters

 (B) Call Glop (X, 5, Y) ;

 This cannot be done using the given methodology because 5 is a value, not a
variable as required by P2. There is no address to pass in to P2. For this to be
made to work at all, the value 5 would need to be stored in memory and the
address of that location be passed to the routine. Incidentally, this is what is done
in traditional FORTRAN: all constants are stored in memory locations, and all
parameters are call-by-reference. This can lead to bizarre problems if a
subroutine then changes a formal parameter with a constant passed in; that
numeric constant now has a new value throughout the remainder of the program!

 (C) Call Glop (X, Y, Z) ;

 LDR R0,X ; Push the value of X onto stack
 STR R0,[SP,#-4]! ;
 ADR R0,Y ; Push address of Y onto stack
 STR R0,[SP,#-4]! ;
 SUB SP,SP,#4 ; Reserve one word on stack for Z
 BL Glop ; CALL SUBROUTINE

– Page 3 –

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

 LDR R0,[SP],#4 ; Pop OUT parameter Z
 STR R0,Z ;
 ADD SP,SP,#8 ; Discard value and var parameters

<6> 10 Points – Using the same definition of subroutine Glop as in problem 5, show how the
framework of the subroutine itself is written in ARM assembly code. In the entry code of
your subroutine you must save register LR, register IP, two 32-bit words of local storage,
register R0, and register R1 onto the stack, in that order. You must also set the value of
the IP register to SP as soon as the old value of IP is saved. In the exit code you must
restore the registers, discard the local storage, restore IP, and return. Fill in the blank
below with the correct stack offset to parameter P1.

 Glop ; Entry code
 STR LR,[SP,#-4]! ; Push LR
 STR IP,[SP,#-4]! ; Push IP
 MOV IP,SP ; Establish IP
 SUB SP,SP,#8 ; Reserve 2 Words
 STR R0,[SP,#-4]! ; Push R0
 STR R1,[SP,#-4]! ; Push R1

;----------------------------------;
; “Do useful work”
;

 LDR R0,[IP,#16] ; Grab P1 off stack
;
;----------------------------------;

 ; Exit code
 LDR R1,[SP],#4 ; Pop R1
 LDR R0,[SP],#4 ; Pop R0
 ADD SP,SP,#8 ; Discard 2 Words
 LDR IP,[SP],#4 ; Pop IP
 LDR PC,[SP],#4 ; Pop and Return

 At the point labeled “Do Useful Work” the stack configuration is as follows:
SP+40 earlier junk IP+24
SP+36 earlier junk IP+20
SP+32 Value for P1 IP+16
SP+28 Address for P2 IP+12
SP+24 Slot for P3 IP+8
SP+20 Return Address IP+4
SP+16 Old IP IP+0
SP+12 Local Word #1 IP-4
SP+8 Local Word #2 IP-8
SP+4 Saved R0 IP-12
SP+0 Saved R1 IP-16

– Page 4 –

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

<7> 10 Points – In the following static RAM bit, the Bit Line on the left is 1 (positive) and its
complement on the right is 0 (grounded). When the Word Line is brought to 1 (positive),
some transistors will conduct, acting like closed switches, and some will be cut off,
acting like open switches. Next to each transistor in the diagram below write “C” for
conductive and “O” for open:

 After the flip-flop settles, the Word Line is now brought to 0 (grounded). Show the
conductive and non-conductive transistors in the diagram below:

 When the Word line is 1, the input values established on the Bit Lines sets the flip-flop
appropriately. Once the flip-flop settles, turning off the Word line simply isolates the
flip-flop from the Bit Lines; it is “remembering” without asserting its value anywhere
else. By making both Bit Line inputs “3-state” (essentially not connected to any external
data source), opening the Word Line again causes the flip-flop to read out its value,
putting on the Bit Lines what it is remembering.

– Page 5 –

CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts

<8> 15 Points – Draw a circuit with four input bits that multiplies the 4-bit unsigned input
value by 5, in hardware. Because the input value is between 0 and 15, the output will be
between 0 and 75, so the result will require 7 bits of output. Your circuit must use
nothing but full-adders and half-adders, oriented as shown below.

To understand this problem you need only look at the binary value of our constant
multiplier, 5. In binary, 5 is 101, which means that 5×N is 4×N + N. Multiplying a
number by 4 is equivalent to shifting it left by two bits, which can be done in hardware
by simply moving the input wires two bits to the left. Since N is four bits wide, 4×N is N
with two zeroes appended to the right. Those two numbers are what need to be added:

 In3 In2 In1 In0
+ In3 In2 In1 In0 0 0

Out6 Out5 Out4 Out3 Out2 Out1 Out0

An adder-chain will do the job, but only a very little hardware is needed. In most cases,
you are adding two bits together, requiring half-adders, but only in one case will you also
need to accommodate an additional carry, requiring a full-adder (In3 + In1 + carry
from adding In2 and In0). More full-adders would be necessary if the input operand
were wider than 4 bits.

– Page 6 –

	CMPSCI 201 – Fall 2006
	Midterm #2 – November 20, 2006
	Professor William T. Verts

