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<1> 10 Points – Trace the following circuit, called a “demultiplexer”, and show its outputs for 
all possible inputs. 

 
INPUT OUTPUT 

DATA A1 A0 D3 D2 D1 D0 
0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 1 0 0 0 0 0 
0 1 1 0 0 0 0 
1 0 0 0 0 0 1 
1 0 1 0 0 1 0 
1 1 0 0 1 0 0 
1 1 1 1 0 0 0 

 

 Note that DATA IN is attached as an input to all four AND-gates, so when it is 0 all outputs 
must also be 0.  You can only get non-0 outputs when DATA IN is 1.  The AND-gates and 
NOT-gates are set up so that of the four possible behaviors of A1 and A0 only one of the 
AND-gates has its upper two bits equal to 1.  Thus, the circuit always has at most one 
output equal to 1, corresponding to the “address” on the A1 and A0 lines. 

<2> 5 Points – Short Answer – How would (much larger) demultiplexer circuits be used with 
2-dimensional grids of CMOS flip-flops?  What can they do that is necessary for the 
proper operation of a memory system?  (It doesn’t matter if the flip-flops are 6-transistor 
static cells or 1-transistor, 1-capacitor dynamic cells.) 

 Larger demultiplexers also have the characteristic that only at most one output will ever 
be 1.  For N address lines (AN-1 … A0) there will be 2N outputs, only one of which can 
ever be 1 at any time.  This makes the circuit perfect for driving the Word Lines in a 
memory grid, so that at most one row of memory bits is active at any time. 

<3> 10 Points – Write a complete ARM subroutine to evaluate the integer quadratic 
polynomial y = 7n2+4n-6, where n is passed in through R0 and the result is passed back 
through R1.  Make certain that your subroutine is completely transparent with respect to 
any temporary registers that you might use.  No solution should require more than ten 
lines of code at the very most (my solution is considerably shorter). 

 
 MUL R1,R0,R0   ; R1  R02   (N2) 
 RSB R1,R1,R1,LSL #3 ; R1  8×R1 – R1   (7N2) 
 ADD R1,R1,R0,LSL #2 ; R1  R1 + 4×R0 (7N2 + 4N) 

SUB R1,R1,#6   ; R1  R1 – 6  (7N2 + 4N – 6) 
MOV PC,LR   ; Return from Subroutine 

 Since all calculations were performed in the return register, no temporary registers 
needed to be saved or restored. 
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<4> 25 Points – In a high-level language such as Pascal, I declare an array of 32-bit integers 
with the statement Var A : Array [1..4,-3..12] Of Integer ; where the 
first element of the array is at A[1,-3] and the last element of the array is at A[4,12].   
There are four rows, indexed from 1 through 4, and sixteen columns, indexed from -3 
through 12.  In translating this array into ARM assembly language, I use the ARM 
directive A % ___ to allocate and initialize to zero all elements of the array (you put the 
number of bytes to allocate in the slot, such as A % 16 to allocate 4 words of memory). 

(A) How many array cells and how many bytes of memory need to be allocated? 

  4 rows × 16 columns = 64 array cells, which is 256 bytes. 

(B) Write a minimal algebraic mathematical expression of the mapping function 
from array indices R and C (row and column) onto the row-major offset into a 
zero-based, 1-dimensional array of the correct number of elements (do not 
compute the byte-offset into physical memory).  Your answer must be a 
polynomial f of the form Offset  f(R,C). 

  General Function = (R–1) × (12 – (-3) + 1) + (C + 3) = (R–1) × 16 + C + 3 
   Minimal Function f(R,C) = 16 × R + C – 13 

(C) Repeat part (B), but this time the minimal function must be for column-major 
memory layout. 

  General Function = (C – (-3)) × (4 – 1 + 1) + (R – 1) = (C+3) × 4 + R – 1  
   Minimal Function f(R,C) = 4 × C + R + 11 

(D) Using the row-major formula you developed in part (B), write the correct ARM 
statements to load into register R0 the contents of A[R,C] where R is in register 
R1 and C is in register R2.  You do not need to perform range checking on R and 
C.  Compute the zero-based array index into register R3, and use the ADR pseudo-
instruction to put the address of array A into register R5. 

 
   ADR R5,A    ; R5  Address of A 
   MOV R3,R1,LSL #4  ; R3  R×16 
   ADD R3,R3,R2   ; R3  R×16 + C 
   SUB R3,R3,#13   ; R3  R×16 + C – 13 
   LDR R0,[R5,R3,LSL #2] ; R0  A[R3] 

(E) Using row-major format, load into R0 the contents of A[2,5] using as few 
ARM statements as possible.  As in part (D), put the address of array A into R5. 

 Using the formula 16×R + C – 13, where R=2 and C=5, we get array offset 24, 
which is byte offset 96.  Either of the following should work: 

 
   ADR R5,A    ADR R5,A+96 
   LDR R0,[R5,#96]  LDR R0,[R5] 

– Page 2 – 



CMPSCI 201 – Fall 2006 – Midterm #2 – Professor William T. Verts 

<5> 15 Points – In some hypothetical high-level programming language (Ada is actually 
pretty close) I can specify whether a parameter to a subroutine is call-by-value (IN), call-
by-return (OUT), call-by-value-return (IN OUT), or call-by-reference (VAR).  Here you 
see a subroutine definition using this form: 

 
Subroutine Glop (IN  P1:Integer ; 

 VAR P2:Integer ;  
 OUT P3:Integer) ; 

 Translate each of the following high-level language calls into ARM assembly language, 
showing both the prolog (setup code before the call that pushes parameters onto the 
stack) and epilog (code after the call that pops parameters off of the stack).  If the call 
cannot be made due to violations in how parameters are used, tell me which parameters 
are in error and why (i.e., “play compiler” and give me an appropriate error message). 

 (A) Call Glop (5, X, Y) ; 
 
  MOV R0,#5  ; Push value 5 onto stack 
  STR R0,[SP,#-4]! ; 
  ADR R0,X   ; Push address of X onto stack 
  STR R0,[SP,#-4]! ; 
  SUB SP,SP,#4  ; Reserve one word on stack for Y 
  BL Glop   ; CALL SUBROUTINE 
  LDR R0,[SP],#4 ; Pop OUT parameter Y 
  STR R0,Y   ; 
  ADD SP,SP,#8  ; Discard value and var parameters 

 (B) Call Glop (X, 5, Y) ; 

 This cannot be done using the given methodology because 5 is a value, not a 
variable as required by P2.  There is no address to pass in to P2.  For this to be 
made to work at all, the value 5 would need to be stored in memory and the 
address of that location be passed to the routine.  Incidentally, this is what is done 
in traditional FORTRAN: all constants are stored in memory locations, and all 
parameters are call-by-reference.  This can lead to bizarre problems if a 
subroutine then changes a formal parameter with a constant passed in; that 
numeric constant now has a new value throughout the remainder of the program! 

 (C) Call Glop (X, Y, Z) ; 
 
  LDR R0,X   ; Push the value of X onto stack 
  STR R0,[SP,#-4]! ; 
  ADR R0,Y   ; Push address of Y onto stack 
  STR R0,[SP,#-4]! ; 
  SUB SP,SP,#4  ; Reserve one word on stack for Z 
  BL Glop   ; CALL SUBROUTINE 
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  LDR R0,[SP],#4 ; Pop OUT parameter Z 
  STR R0,Z   ; 
  ADD SP,SP,#8  ; Discard value and var parameters 

<6> 10 Points – Using the same definition of subroutine Glop as in problem 5, show how the 
framework of the subroutine itself is written in ARM assembly code.  In the entry code of 
your subroutine you must save register LR, register IP, two 32-bit words of local storage, 
register R0, and register R1 onto the stack, in that order.  You must also set the value of 
the IP register to SP as soon as the old value of IP is saved.  In the exit code you must 
restore the registers, discard the local storage, restore IP, and return.  Fill in the blank 
below with the correct stack offset to parameter P1. 

 
 Glop        ; Entry code 
  STR LR,[SP,#-4]!    ; Push LR 
  STR IP,[SP,#-4]!    ; Push IP 
  MOV IP,SP     ; Establish IP 
  SUB SP,SP,#8     ; Reserve 2 Words 
  STR R0,[SP,#-4]!    ; Push R0 
  STR R1,[SP,#-4]!    ; Push R1 
 

;----------------------------------; 
;  “Do useful work” 
; 

   LDR R0,[IP,#16]   ; Grab P1 off stack 
; 
;----------------------------------; 

 
         ; Exit code 
  LDR R1,[SP],#4    ; Pop R1 
  LDR R0,[SP],#4    ; Pop R0 
  ADD SP,SP,#8     ; Discard 2 Words 
  LDR IP,[SP],#4    ; Pop IP 
  LDR PC,[SP],#4    ; Pop and Return 

 At the point labeled “Do Useful Work” the stack configuration is as follows: 
SP+40 earlier junk  IP+24 
SP+36 earlier junk  IP+20 
SP+32 Value for P1  IP+16 
SP+28 Address for P2  IP+12 
SP+24 Slot for P3  IP+8 
SP+20 Return Address  IP+4 
SP+16 Old IP   IP+0 
SP+12 Local Word #1  IP-4 
SP+8  Local Word #2  IP-8 
SP+4  Saved R0   IP-12 
SP+0  Saved R1   IP-16 
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<7> 10 Points – In the following static RAM bit, the Bit Line on the left is 1 (positive) and its 
complement on the right is 0 (grounded).  When the Word Line is brought to 1 (positive), 
some transistors will conduct, acting like closed switches, and some will be cut off, 
acting like open switches.  Next to each transistor in the diagram below write “C” for 
conductive and “O” for open: 

 

 After the flip-flop settles, the Word Line is now brought to 0 (grounded).  Show the 
conductive and non-conductive transistors in the diagram below: 

 

 When the Word line is 1, the input values established on the Bit Lines sets the flip-flop 
appropriately.  Once the flip-flop settles, turning off the Word line simply isolates the 
flip-flop from the Bit Lines; it is “remembering” without asserting its value anywhere 
else.  By making both Bit Line inputs “3-state” (essentially not connected to any external 
data source), opening the Word Line again causes the flip-flop to read out its value, 
putting on the Bit Lines what it is remembering. 
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<8> 15 Points – Draw a circuit with four input bits that multiplies the 4-bit unsigned input 
value by 5, in hardware.  Because the input value is between 0 and 15, the output will be 
between 0 and 75, so the result will require 7 bits of output.  Your circuit must use 
nothing but full-adders and half-adders, oriented as shown below. 

  

To understand this problem you need only look at the binary value of our constant 
multiplier, 5.  In binary, 5 is 101, which means that 5×N is 4×N + N.  Multiplying a 
number by 4 is equivalent to shifting it left by two bits, which can be done in hardware 
by simply moving the input wires two bits to the left.  Since N is four bits wide, 4×N is N 
with two zeroes appended to the right.  Those two numbers are what need to be added: 

 
   In3 In2 In1 In0 
+ In3 In2 In1 In0 0 0 

Out6 Out5 Out4 Out3 Out2 Out1 Out0 

An adder-chain will do the job, but only a very little hardware is needed.  In most cases, 
you are adding two bits together, requiring half-adders, but only in one case will you also 
need to accommodate an additional carry, requiring a full-adder (In3 + In1 + carry 
from adding In2 and In0).  More full-adders would be necessary if the input operand 
were wider than 4 bits. 
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