
CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

CMPSCI 201 – Fall 2006

Midterm #1 – October 23, 2006

SOLUTION KEY
Professor William T. Verts

CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

<1> 15 Points – For each of the following 8-bit binary values, show the equivalent decimal
(base 10) values for both unsigned and signed interpretations, as well as the 8-bit two’s-
complement negation. The sign bit is the left-most of the eight bits.

Initial Value
8-Bit Binary

Unsigned
Decimal

Signed
Decimal

2’s Complement
8-Bit Binary

00000000 0 0 00000000
01111011 123 +123 10000101
10000000 128 -128 10000000
11110101 245 -11 00001011
11111111 255 -1 00000001

<2> 15 Points – For each of the following 8-bit binary addition problems, show the sum in
binary (8 bits) and the new values, 0 or 1, of the N (negative), Z (zero), V (overflow), and
C (carry) status bits as a result of the sum. The sign bit is the left-most of the eight bits.

 01110100 01110100 10001101
 +10000111 +00111111 +11100101
 Sum= 11111011 Sum= 10110011 Sum= 01110010
 N = 1 N = 1 N = 0
 Z = 0 Z = 0 Z = 0
 V = 0 V = 1 V = 1
 C = 0 C = 0 C = 1

<3> 10 Points – You know that the single ARM instruction ADD R0,R0,R0,LSL #2 will
multiply the contents of R0 by 5 in-place without using the MUL instruction. By using
other shift amounts, or by using different op-codes (such as MOV, MVN, SUB, or RSB),
you can multiply in-place by a wide variety of constants. Determine, yes or no, if each of
the numbers listed below can be used as a multiplier in this fashion. If yes, write down
the single ARM instruction that will multiply R0 in-place by the specified constant. If
no, explain why not.

 1. 7 Yes: RSB R0,R0,R0,LSL #3 (8×R0 – R0)

 2. 17 Yes: ADD R0,R0,R0,LSL #4 (16×R0 + R0)

 3. 21 No: 21 is 10101 in binary, requiring add/subtract of multiple shifts

 4. -7 Yes: SUB R0,R0,R0,LSL #3 (R0 - 8×R0)

 5. 6 No: 6 is 110 in binary, requiring add/subtract of multiple shifts

– Page 1 –

CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

<4> 10 Points – A task in an x86 program is to multiply two 16-bit integer numbers together
as if they were fixed-point numbers, where the implicit decimal point is in the middle of
each number (i.e., eight bits of whole number to the left and eight bits of fraction to the
right). One operand is in AX and the other is in BX. Write a code fragment (not a
subroutine or complete program) in correct x86 assembly language that returns the fixed-
point product in AX. Ignore problems with overflow, and don’t worry about register
transparency; simply return in AX the middle 16 bits of the 32-bit product. (We looked at
a similar problem on the ARM of multiplying two 32-bit fixed-point numbers together.)

 Just performing MUL (or IMUL) puts the 32-bit product into DX:AX, so we need to get
the composite number shifted right by eight bits. The brute-force approach is to shift DX
right one bit (dropping the rightmost bit into the carry bit), then rotate right AX one bit
(rotating the carry bit into the high bit of AX), and do it eight times:

 MUL BX
MOV CX,8

 Again: SHR DX,1
 ROR AX,1
 LOOP Again

The key insight to performing this efficiently is to recognize that while AX is 16 bits, each
8-bit half is independently named as AH and AL. Similarly, DX is DH and DL. Thus, the
part that we want is the lower half of DX (DL) and the upper half of AX (AH), and those
pieces need to be moved into AX:

 MUL BX
 MOV AL,AH
 MOV AH,DL

<5> 15 Points – The value 527 is in register R0. Trace the following ARM code fragment,
and show the register results (in decimal) after each corresponding instruction is
executed. Write xxx in registers where the value is not yet known (as shown). 5 points
extra credit for determining the intended function of this program fragment.

 R0 R1 R2
 527 xxx xxx
 SUB R1,R0,#10 527 517 xxx
 SUB R0,R0,R0,LSR #2 396 517 xxx
 ADD R0,R0,R0,LSR #4 420 517 xxx
 ADD R0,R0,R0,LSR #8 421 517 xxx
 ADD R0,R0,R0,LSR #16 421 517 xxx
 MOV R0,R0,LSR #3 52 517 xxx
 ADD R2,R0,R0,LSL #2 52 517 260
 SUBS R1,R1,R2,LSL #1 52 -3 260
 ADDPL R0,R0,#1 52 -3 260
 ADDMI R1,R1,#10 52 7 260

Extra Credit: This code fragment divides register R0 by 10, and puts the remainder into
register R1 (register R2 is just a temporary variable).

– Page 2 –

CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

<6> 15 Points –We have seen how to load constants into 8-bit 6502 registers, 16-bit or 32-bit
x86 registers, and 32-bit ARM registers. For example, we might write LDA #0 on the
6502, MOV AX,0 on the 8088, MOV EAX,0 on the 386 (and later), and MOV R0,#0 on
the ARM. Any legal constant can be part of the 6502 and x86 instructions, but only a
restricted set is available on the ARM. On the back of this page write a short essay
explaining why this is so. In your answer discuss CISC vs. RISC designs, instruction
lengths, execution time, etc. Please write neatly.

The 6502 and x86 processors have instructions that are of variable length, so they can
string along enough bytes to embed the entire constant into the instruction. This takes
extra fetches, and correspondingly extra execution time, depending on the length of the
constant. Having instructions of variable length and execution time is fairly typical of
CISC designs.

(So, for the 6502 the “LDA immediate” op-code tells the processor to fetch one more
byte, on the 8088 the “MOV AX,___” op-code tells the processor to fetch two more
bytes, and on the 386 and later the “MOV EAX,___” op-code tells the processor to
fetch four more bytes. Similarly, the “MOV AH,___” instructions tells the 8088 to fetch
only one more byte. The 6502 is primitive enough that it has characteristics of both RISC
and CISC, and was in large part an inspiration for the ARM design team).

In contrast, the ARM instructions are always 32 bits in length. Those 32 bits must
reserve space for the op-code, conditional execution codes, destination register, etc.,
leaving only a few bits remaining to encode constants. In particular, ARM instructions
have only 12 bits for encoding constants, which allows only 4096 distinct values. Since
instructions are fixed length, they take a fixed amount of time to fetch from memory and
decode. Since the instruction lengths are known, it is easy for the processor to be
executing one instruction as it is decoding the next (already fetched) instruction and
fetching the instruction after that. This is typical of RISC designs.

(Pre-fetching instructions on a variable-length instruction set is much more difficult to
perform efficiently.)

– Page 3 –

CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

<7> 15 Points – In this problem you are to create an ARM subroutine to print out the 32-bit
value passed in through register R0 as eight hexadecimal characters. Since we have not
covered subroutine mechanisms on the ARM, nor how to use the stack, I have outlined
the framework for the subroutine below. You do not have to worry about register
transparency. The software tool that prints characters on the platform we will use expects
its ASCII argument in the rightmost eight bits of R0, and is called by the ARM
instruction SWI &0 (this is a software interrupt). You may not call other subroutines.

Print_Hex ; Subroutine entry point

 MOV R1,R0
 MOV R2,#28
 Loop MOV R0,R1,LSR R2
 AND R0,R0,#&0000000F
 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0
 SUBS R2,R2,#4
 BGE Loop

-or-

 MOV R1,R0

 MOV R0,R1,LSR #28 ; Copy #1
 AND R0,R0,#&0000000F
 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0

 MOV R0,R1,LSR #24 ; Copy #2
 AND R0,R0,#&0000000F
 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0
 …
 MOV R0,R1,LSR #0 ; Copy #8
 AND R0,R0,#&0000000F
 CMP R0,#9
 ADDGT R0,R0,#'A'-10
 ADDLE R0,R0,#'0'
 SWI &0

MOV PC,LR ; Return from subroutine

– Page 4 –

CMPSCI 201 – Fall 2006 – Midterm #1 – Professor William T. Verts

<8> 5 Points – The following x86 code fragment computes the integer square-root of the
unsigned 16-bit value in AX, and returns that value in AX (overwriting the initial value).

 XOR BX,BX EOR R1,R1,R1
 XOR CX,CX EOR R2,R2,R2
 MOV DX,1 MOV R3,#1

 SQRT_Loop: ADD CX,DX ADD R2,R2,R3
 CMP CX,AX CMP R2,R0
 JA SQRT_Done BHI SQRT_Done
 INC BX ADD R1,R1,#1
 ADD DX,2 ADD R3,R3,#2
 CMP BX,255 CMP R1,#255
 JL SQRT_Loop BLT SQRT_Loop
 SQRT_Done: MOV AX,BX MOV R0,R1

Translate this fragment into the equivalent ARM code, where the argument is passed in
and the result is passed back through register R0. Note that the x86 unsigned conditional
jump JA (jump-if-above) is equivalent to the ARM instruction BHI (branch-if-higher).

The instructions can be translated essentially 1-for-1 from x86 into ARM code. It would
be an even closer match had the x86 instructions been written for the 386 or later (using
XOR EBX,EBX instead of XOR BX,BX for example). By mechanically writing R0 for
AX, R1 for BX, R2 for CX, and R3 for DX, the instructions need only be replaced with the
equivalent op-codes and register formats required by the ARM. One minor syntactic
change is that the commas must be omitted from the jump-labels. The EOR R2,R2,R2
instruction could be written as MOV R2,#0 which takes up the same space and has the
same effect.

– Page 5 –

	CMPSCI 201 – Fall 2006
	Midterm #1 – October 23, 2006
	Professor William T. Verts

