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<1> 15 Points – For each of the following 8-bit binary values, show the equivalent decimal 
(base 10) values for both unsigned and signed interpretations, as well as the 8-bit two’s-
complement negation.  The sign bit is the left-most of the eight bits. 

 
Initial Value 
8-Bit Binary 

Unsigned 
Decimal 

Signed 
Decimal 

2’s Complement 
8-Bit Binary 

00000000 0 0 00000000 
01111011 123 +123 10000101 
10000000 128 -128 10000000 
11110101 245 -11 00001011 
11111111 255 -1 00000001 

<2> 15 Points – For each of the following 8-bit binary addition problems, show the sum in 
binary (8 bits) and the new values, 0 or 1, of the N (negative), Z (zero), V (overflow), and 
C (carry) status bits as a result of the sum.  The sign bit is the left-most of the eight bits. 

 
   01110100    01110100    10001101 
  +10000111   +00111111   +11100101 
 Sum=  11111011  Sum=  10110011  Sum=  01110010 
 N  =  1   N  =  1   N  =  0 
 Z  =  0   Z  =  0   Z  =  0 
 V  =  0   V  =  1   V  =  1 
 C  =  0   C  =  0   C  =  1 

<3> 10 Points – You know that the single ARM instruction ADD R0,R0,R0,LSL #2 will 
multiply the contents of R0 by 5 in-place without using the MUL instruction.  By using 
other shift amounts, or by using different op-codes (such as MOV, MVN, SUB, or RSB), 
you can multiply in-place by a wide variety of constants.  Determine, yes or no, if each of 
the numbers listed below can be used as a multiplier in this fashion.  If yes, write down 
the single ARM instruction that will multiply R0 in-place by the specified constant.  If 
no, explain why not. 

 1. 7 Yes: RSB R0,R0,R0,LSL #3 (8×R0 – R0) 

 2. 17 Yes: ADD R0,R0,R0,LSL #4 (16×R0 + R0) 

 3. 21 No: 21 is 10101 in binary, requiring add/subtract of multiple shifts 

 4. -7 Yes: SUB R0,R0,R0,LSL #3 (R0 - 8×R0) 

 5. 6 No: 6 is 110 in binary, requiring add/subtract of multiple shifts 
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<4> 10 Points – A task in an x86 program is to multiply two 16-bit integer numbers together 
as if they were fixed-point numbers, where the implicit decimal point is in the middle of 
each number (i.e., eight bits of whole number to the left and eight bits of fraction to the 
right).  One operand is in AX and the other is in BX.  Write a code fragment (not a 
subroutine or complete program) in correct x86 assembly language that returns the fixed-
point product in AX.  Ignore problems with overflow, and don’t worry about register 
transparency; simply return in AX the middle 16 bits of the 32-bit product.  (We looked at 
a similar problem on the ARM of multiplying two 32-bit fixed-point numbers together.) 

 Just performing MUL (or IMUL) puts the 32-bit product into DX:AX, so we need to get 
the composite number shifted right by eight bits.  The brute-force approach is to shift DX 
right one bit (dropping the rightmost bit into the carry bit), then rotate right AX one bit 
(rotating the carry bit into the high bit of AX), and do it eight times: 

    MUL BX 
MOV CX,8 

  Again: SHR DX,1 
    ROR AX,1 
    LOOP Again    

The key insight to performing this efficiently is to recognize that while AX is 16 bits, each 
8-bit half is independently named as AH and AL.  Similarly, DX is DH and DL.  Thus, the 
part that we want is the lower half of DX (DL) and the upper half of AX (AH), and those 
pieces need to be moved into AX: 

    MUL BX 
    MOV AL,AH 
    MOV AH,DL 

<5> 15 Points – The value 527 is in register R0.  Trace the following ARM code fragment, 
and show the register results (in decimal) after each corresponding instruction is 
executed.  Write xxx in registers where the value is not yet known (as shown).  5 points 
extra credit for determining the intended function of this program fragment. 

 
       R0  R1  R2 
       527  xxx  xxx  
 SUB  R1,R0,#10   527  517  xxx 
 SUB  R0,R0,R0,LSR #2  396  517  xxx 
 ADD  R0,R0,R0,LSR #4  420  517  xxx 
 ADD  R0,R0,R0,LSR #8  421  517  xxx 
 ADD  R0,R0,R0,LSR #16  421  517  xxx 
 MOV  R0,R0,LSR #3    52  517  xxx 
 ADD  R2,R0,R0,LSL #2   52  517  260 
 SUBS  R1,R1,R2,LSL #1   52   -3  260 
 ADDPL R0,R0,#1     52   -3  260 
 ADDMI R1,R1,#10    52    7  260 
 

Extra Credit: This code fragment divides register R0 by 10, and puts the remainder into 
register R1 (register R2 is just a temporary variable). 
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<6> 15 Points –We have seen how to load constants into 8-bit 6502 registers, 16-bit or 32-bit 
x86 registers, and 32-bit ARM registers.  For example, we might write LDA #0 on the 
6502, MOV AX,0 on the 8088, MOV EAX,0 on the 386 (and later), and MOV R0,#0 on 
the ARM.  Any legal constant can be part of the 6502 and x86 instructions, but only a 
restricted set is available on the ARM.  On the back of this page write a short essay 
explaining why this is so.  In your answer discuss CISC vs. RISC designs, instruction 
lengths, execution time, etc.  Please write neatly. 

The 6502 and x86 processors have instructions that are of variable length, so they can 
string along enough bytes to embed the entire constant into the instruction.  This takes 
extra fetches, and correspondingly extra execution time, depending on the length of the 
constant.  Having instructions of variable length and execution time is fairly typical of 
CISC designs. 

(So, for the 6502 the “LDA immediate” op-code tells the processor to fetch one more 
byte, on the 8088 the “MOV AX,___” op-code tells the processor to fetch two more 
bytes, and on the 386 and later the “MOV EAX,___” op-code tells the processor to 
fetch four more bytes.  Similarly, the “MOV AH,___” instructions tells the 8088 to fetch 
only one more byte.  The 6502 is primitive enough that it has characteristics of both RISC 
and CISC, and was in large part an inspiration for the ARM design team). 

In contrast, the ARM instructions are always 32 bits in length.  Those 32 bits must 
reserve space for the op-code, conditional execution codes, destination register, etc., 
leaving only a few bits remaining to encode constants.  In particular, ARM instructions 
have only 12 bits for encoding constants, which allows only 4096 distinct values.  Since 
instructions are fixed length, they take a fixed amount of time to fetch from memory and 
decode.  Since the instruction lengths are known, it is easy for the processor to be 
executing one instruction as it is decoding the next (already fetched) instruction and 
fetching the instruction after that.  This is typical of RISC designs. 

(Pre-fetching instructions on a variable-length instruction set is much more difficult to 
perform efficiently.) 
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<7> 15 Points – In this problem you are to create an ARM subroutine to print out the 32-bit 
value passed in through register R0 as eight hexadecimal characters.  Since we have not 
covered subroutine mechanisms on the ARM, nor how to use the stack, I have outlined 
the framework for the subroutine below.  You do not have to worry about register 
transparency.  The software tool that prints characters on the platform we will use expects 
its ASCII argument in the rightmost eight bits of R0, and is called by the ARM 
instruction SWI &0 (this is a software interrupt).  You may not call other subroutines. 

 
Print_Hex      ; Subroutine entry point 

     MOV  R1,R0 
     MOV  R2,#28 
 Loop    MOV  R0,R1,LSR R2 
     AND  R0,R0,#&0000000F 
     CMP  R0,#9 
     ADDGT R0,R0,#'A'-10 
     ADDLE R0,R0,#'0' 
     SWI  &0 
     SUBS  R2,R2,#4 
     BGE  Loop 
 

-or- 
 
     MOV  R1,R0 
 
     MOV  R0,R1,LSR #28  ; Copy #1 
     AND  R0,R0,#&0000000F 
     CMP  R0,#9 
     ADDGT R0,R0,#'A'-10 
     ADDLE R0,R0,#'0' 
     SWI  &0 
 
     MOV  R0,R1,LSR #24  ; Copy #2 
     AND  R0,R0,#&0000000F 
     CMP  R0,#9 
     ADDGT R0,R0,#'A'-10 
     ADDLE R0,R0,#'0' 
     SWI  &0 
     … 
     MOV  R0,R1,LSR #0  ; Copy #8 
     AND  R0,R0,#&0000000F 
     CMP  R0,#9 
     ADDGT R0,R0,#'A'-10 
     ADDLE R0,R0,#'0' 
     SWI  &0 
 

MOV  PC,LR ; Return from subroutine 
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<8> 5 Points – The following x86 code fragment computes the integer square-root of the 
unsigned 16-bit value in AX, and returns that value in AX (overwriting the initial value). 

 
    XOR BX,BX  EOR  R1,R1,R1 
    XOR CX,CX  EOR R2,R2,R2 
    MOV DX,1   MOV R3,#1 
 
     SQRT_Loop: ADD CX,DX  ADD R2,R2,R3 
    CMP CX,AX  CMP R2,R0 
    JA SQRT_Done  BHI SQRT_Done 
    INC BX   ADD R1,R1,#1 
    ADD DX,2   ADD R3,R3,#2 
    CMP BX,255  CMP R1,#255 
    JL SQRT_Loop  BLT SQRT_Loop 
     SQRT_Done: MOV AX,BX  MOV R0,R1 
 

Translate this fragment into the equivalent ARM code, where the argument is passed in 
and the result is passed back through register R0.  Note that the x86 unsigned conditional 
jump JA (jump-if-above) is equivalent to the ARM instruction BHI (branch-if-higher). 
 
The instructions can be translated essentially 1-for-1 from x86 into ARM code.  It would 
be an even closer match had the x86 instructions been written for the 386 or later (using 
XOR EBX,EBX instead of XOR BX,BX for example).  By mechanically writing R0 for 
AX, R1 for BX, R2 for CX, and R3 for DX, the instructions need only be replaced with the 
equivalent op-codes and register formats required by the ARM.  One minor syntactic 
change is that the commas must be omitted from the jump-labels.  The EOR R2,R2,R2 
instruction could be written as MOV R2,#0 which takes up the same space and has the 
same effect.  
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