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CMPSCI 201 – Fall 2006 

Final Exam Solution 
<1> 10 Points – Convert the decimal number ⅔ into single-precision floating-point 

representation.  Since ⅔ is a repeating fraction in both decimal and in binary, put into the 
mantissa the closest possible approximation (i.e., perform rounding as needed). 

 Start by converting ⅔ into true binary.  If you multiply a fraction by 2, it is the same as 
left-shifting the number and what was the left-most bit of the fraction shifts to the left of 
the decimal point.  Repeating the process successively shifts bits to the left of the 
decimal.  You can do this by using either vulgar fractions or explicit decimal fractions: 

 
   Step Vulgar Decimal  Bit 
   0 ⅔  .666… 
   1 ⅔×2=1⅓ .666…×2=1.333… 1 
   2 ⅓×2=0⅔ .333…×2=0.666… 0 
   3 ⅔×2=1⅓ .666…×2=1.333… 1 
   4 ⅓×2=0⅔ .333…×2=0.666… 0 
   … …  …   … 

 The sequence repeats after two steps, so the fraction ⅔ is 0.1010101010… (as a side note 
the fraction ⅓ is by the same technique 0.0101010101… in binary, and adding ⅓+⅔= 
0.11111111111… which is exactly one in the same sense that the decimal value 
0.99999999999… is also exactly equal to one). 

 Converting the binary fractional representation of ⅔ into binary scientific notation gives 
us 1.01010101010…×2-1, with the exponent equal to -1.  The biased exponent in single 
precision is 127-1=126, or 01111110 in binary.  The remaining fraction (minus the 
leading 1 bit) is .01010101010…, and when you place that pattern into the mantissa you 
will find that the last bit kept is 0 and the first bit discarded is 1.  Since the part being 
discarded is greater than or equal to half the value of the last bit kept, that last (right-
most) bit is rounded up from 0 to 1.  Since the original number was positive, the sign bit 
is 0. 
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<2> 5 Points – In this problem we are converting hexadecimal nybbles (values between 0 and 
15) into the equivalent ASCII characters according to the given table.  The “difference” 
column shows the offset to add to the nybble value to convert it into the corresponding 
ASCII character.  In all cases 48 is added; if the nybble value is greater than 9 then 7 
more is added as well. 

 
Nybble ASCII 
Value Character Value Difference 
0 '0' 48 = 0110000 48 
1 '1' 49 = 0110001 48 
2 '2' 50 = 0110010 48 
3 '3' 51 = 0110011 48 
4 '4' 52 = 0110100 48 
5 '5' 53 = 0110101 48 
6 '6' 54 = 0110110 48 
7 '7' 55 = 0110111 48 
8 '8' 56 = 0111000 48 
9 '9' 57 = 0111001 48 
10 'A' 65 = 1000001 55 = 48 + 7 
11 'B' 66 = 1000010 55 = 48 + 7 
12 'C' 67 = 1000011 55 = 48 + 7 
13 'D' 68 = 1000100 55 = 48 + 7 
14 'E' 69 = 1000101 55 = 48 + 7 
15 'F' 70 = 1000110 55 = 48 + 7 

 Write a correct ARM code fragment to perform the conversion, given that the nybble 
value is in register R0.  The ASCII character must be returned in R0, and no other 
registers may be used.  Your solution may not use more than three ARM instructions (one 
point will be removed for every extraneous instruction). 

 
There are a number of approaches that can be taken, all of which compare the value in R0 
against 9 or 10 and add the appropriate offset depending on the result of the comparison.  
Here are a few legal solutions.  In some cases we could use unsigned condition codes 
instead of signed (i.e., HI and LS instead of GT and LE), since all values under 
consideration fall between 0 and 15: 

 
CMP  R0,#9    CMP  R0,#9 
ADDLE R0,R0,#'0'   ADDLE R0,R0,#48 
ADDGT R0,R0,#'A'-10   ADDGT R0,R0,#55 
 
CMP  R0,#10    CMP  R0,#10 
ADDLT R0,R0,#'0'   ADDLT R0,R0,#48 
ADDGE R0,R0,#'A'-10   ADDGE R0,R0,#55 

 
The value 48 is the same as the ASCII code for '0' and the value 55 is the value for 
'A' (65) minus 10 because the first of the letters starts at input value 10 in the sequence. 
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The problem setup, however, was attempting to guide the thought process towards the 
following solutions, which are appropriate for the subsequent exam problem: 

 
CMP  R0,#9    CMP  R0,#9 
ADD   R0,R0,#'0'   ADD   R0,R0,#48 
ADDGT R0,R0,#'A'-10-'0'  ADDGT R0,R0,#7 

 
In this case, we are always adding 48 (the ASCII code for '0').  If the input number 
happens to be in the range 10…15, only then do we add the difference between 'A'-10 
and the '0' that we already added; that difference is 7.  Note that in this solution the flag 
bits are set in the first instruction, ignored in the second instruction, and finally acted 
upon in the third instruction.  Now look at the 8-bit binary version of what is going on in 
this solution: 

 
  0000XXXX    The Binary number in R0 between 0 and 15 
  01100000    The 48 we are always adding 
  00000111    The 7 we might add if XXXX > 9 

  
The 1-bits of the two correction factors do not overlap, so if we have a binary adder 
where one operand is 0000XXXX, we can pump in the 1-bits for the two correction 
factors into the other operand without any additional logic gates (as long as we know 
whether or not XXXX>9).  This observation helps in the following problem. 
 

<3> 15 Points – Now we wish to perform the previous problem in hardware.  I have laid out 
the overall circuit framework, but you need to fill in the boxes with the appropriate gate 
logic.  In the top box draw a circuit (using simple AND, OR, or NOT gates) to detect 
when the Hex Nybble In contains a value that is greater than 9.  In the bottom box draw 
a circuit to send the correct values to the adder for when the input is greater than 9 and 
when the input is less than or equal to 9 (the solution to this task is surprisingly simple, 
and not all of the information coming in to this box will be required in the solution).  You 
will need to consult the table on the previous page. 

 
 Before we look at the circuit solution, we first need to think about how to detect whether 

or not a 4-bit number is greater than 9.  All such numbers, in binary, have their #8 bit (the 
leftmost bit) set to 1.  Binary numbers between 10 and 15 (inclusive) will also have either 
the #4 bit set or the #2 bit set, or both.  Numbers less than or equal to 9 might have the #8 
bit set, and either the #4 bit set or the #2 bit set, but not all at the same time.  Whether or 
not the #1 (rightmost) bit is set is immaterial: 

 
  Decimal Binary Bits Set
  10  1010  #8, #2 
  11  1011  #8, #2, #1 
  12  1100  #8, #4 
  13  1101  #8, #4, #1 
  14  1110  #8, #4, #2 
  15  1111  #8, #4, #2, #1 
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The solution to the “Hex>9” circuit is simply to AND the #8 input bit with the OR of the #4 and 
#2 input bits.  The only way that the output will be 1 is if the input is 8+2=10, 8+4=12, or 
8+4+2=14, and since the #1 bit is ignored it also detects 8+2+1=11, 8+4+1=13, and 
8+4+2+1=15.   
 
The adder gets most of its inputs from the “Always 1” and “Always 0” lines, setting up the 
pattern to always add 48 to the input nybble.  The “Hex>9” line is connected to the lowest three 
bits of the adder, so if “Hex>9” is 1 then the sum is increased by the additional 7 needed to 
correct for the conversion between the ASCII digits and the ASCII letters.  The adder handles 
carries internally.  In reality this circuit can be simplified even more by replacing the upper four 
adder cells with half-adders instead of full-adders.  Why have extra circuitry to only add zero? 
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<4> 5 Points – In the following barrel shifter circuit, trace the path for the DATA IN 0 bit 
when the shift pattern is 101 (i.e., A2=1, A1=0, A0=1), and show where that bit emerges. 

 
 

Each 2:1 MUX (multiplexer) passes its top input to the output when its control line is 0, 
and passes its bottom input to the output when its control line is 1.  In the first (leftmost) 
stage the control line is 1, so all multiplexers in that column are listening to their bottom 
inputs and are ignoring their top inputs.  Even though the Data In 0 bit is going to 
multiplexers #0 and #4 in the first stage, only one of them (#4) passes that value on, to 
multiplexers #2 and #4 in the second stage.  All multiplexers in the second stage are 
listening to their top inputs since the control line is 0, so multiplexer #4 in the second 
stage passes its top input on to multiplexers #3 and #4 in the third stage.  All multiplexers 
in the third stage are listening to their bottom inputs since the control line is 1, so #3 
passes its bottom input to the output, Data Out 3. 

<5> 5 Points – Does the above circuit perform a left shift, a right shift, a left rotate, or a right 
rotate?  (Consider bit position 0 to be rightmost and bit position 7 to be leftmost.) 

 The value input into Data In 0 appears in the output at Data Out 3, and because all data 
bits appear at the output offset from the input by the same amount this must be a rotate 
rather than a shift.  Only if a 0 or 1 was always pumped in at one end or the other (thus 
losing data bits) would this be a shift.  The immediate inference to draw is that this is a 
left-rotate-by-3, but since the control lines are 1-0-1, which has the binary value 5, this is 
actually a right-rotate-by-5. 
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<6> 5 Points – I want to compute the polynomial 2x2-3x+10 using the floating point registers.  
The value for x is in F0, and the result must appear in F1.  EXTRA CREDIT: +5 points 
if you modify no register other than F1 in your solution. 

 
The constants in this problem were chosen so that they are all legal values as the 
immediate portion of an ARM floating point instruction (the only legal immediate 
floating point constants are 0.5, 0.0 through 5.0, and 10.0).  Remember that shifting is not 
allowed on the floating point side of the processor. 
 
The easiest brute-force solution is to burn another register, such as F2, in order to hold 
temporary values.   

 
   MUFS F1,F0,F0  ; F1  X2

   MUFS F1,F1,#2.0 ; F1  2X2

   MUFS F2,F0,#3.0 ; F2  3X 
   SUFS F1,F1,F2  ; F1  2X2 – 3X 
   ADFS F1,F1,#10.0 ; F1  2X2 – 3X + 10 

 
For extra credit, no extra registers may be used.  Here is one approach, which requires 
multiple subtracts to perform the -3X portion. 

 
   MUFS F1,F0,F0  ; F1  X2

   ADFS F1,F1,F1  ; F1  2X2

   SUFS F1,F1,F0  ; F1  2X2 - X 
   SUFS F1,F1,F0  ; F1  2X2 - 2X 
   SUFS F1,F1,F0  ; F1  2X2 - 3X 
   ADFS F1,F1,#10.0 ; F1  2X2 - 3X + 10 

 
Here is another extra credit approach, which requires that Horner’s rule be applied to 
convert the polynomial from 2x2 – 3x + 10 into (2x – 3)x + 10, thus greatly simplifying 
the solution (two variants shown). 

 
   MUFS F1,F0,#2.0 ; F1  2X 
   SUFS F1,F1,#3.0 ; F1  2X - 3 
   MUFS F1,F1,F0  ; F1  2X2 - 3X 
   ADFS F1,F1,#10.0 ; F1  2X2 – 3X + 10 
 
 
   ADFS F1,F0,F0  ; F1  2X 
   SUFS F1,F1,#3.0 ; F1  2X - 3 
   MUFS F1,F1,F0  ; F1  2X2 - 3X 
   ADFS F1,F1,#10.0 ; F1  2X2 – 3X + 10 
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<7> 10 Points – Trace the following “walking ring” counter through several clock cycles, 
starting with all flip-flops set to zero.  Will all possible states occur during the count?  If 
not, which states will not occur? 

 
 

Clock Q2 Q1 Q0 
0 0 0 0 
1 1 0 0 
2 1 1 0 
3 1 1 1 
4 0 1 1 
5 0 0 1 
6 0 0 0 
7 1 0 0 
8 1 1 0 

  

Even though there are three flip-flops, not all of the 23=8 possible states appear in the 
table.  The sequence repeats after six clocks.  The only patterns which do not appear are 
010 and 101.  If either pattern is forced into the walking-ring counter through external 
means (i.e., through the set or clear inputs on the flip-flops), the two patterns will 
alternate on every clock cycle (010, to 101, to 010, forever).   

Note that a two-flip-flop walking-ring counter will clock through all four of its legal 
states, but any longer walking-ring counter will not clock though all possible states.  The 
degenerate case is that a one-flip-flop walking-ring counter is the same as a toggle flip-
flop, which alternates its output on every clock cycle. 
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<8> 10 Points – An ARM instruction sets the status bits as follows: N=1, V=0, C=1 and Z=0.  
The next instruction has the condition code 1101.  Trace the circuit below and determine, 
yes-or-no, if this new instruction will execute or not.  Show the output of every gate. 

 

The condition code 1101 means that input #13 on the multiplexer is the one that will be 
passed on to the output.  Regardless of their values, the other multiplexer inputs are 
ignored.  By tracing the circuit from the known values of the status bits, we determine 
that multiplexer input #13 is 1 (from the OR-gate), so yes, this instruction will execute. 
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<9> 10 Points – Examine the memory grid below.  With N=15, M=7, and B=24, then… 

 

 

1. …how many address lines are there? (2 points) 

 N + M = 15 + 7 = 22 

2. …how many word lines are there? (2 points) 

 2N = 215 = 32,768 

3. …how many bit lines are there? (2 points) 

 B × 2M = 24 × 27 = 3 × 23 × 27 = 3 × 210 = 3 × 1024 = 3072 

4. …how many memory bits are there? (2 points) 

 215 word lines × 24 × 27 bit lines = 24 × 222 = 3 × 225 = 100,663,296 

 32768 × 3072 = 100,663,296 

5. …how many bytes of memory are there? (2 points) 

  2N+M addresses × 3 bytes per address = 222× 3 = 3 × 4,194,304 = 12,582,912 bytes 
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<10> 25 Points – In this final set of problems we have invented a new floating-point 
format that fits entirely into an 8-bit byte.  In this representation, which we will call 
FLOAT8, there is one bit reserved for the sign (as usual), three bits for the biased 
exponent, and four bits for the mantissa.  Plus-infinity is 01110000, positive 
denormalized numbers are of the form 0000xxxx (for xxxx not all zero), and zero is 
00000000. 

1. (1 point) What is the bias value for the FLOAT8 format? 

If the number of bits in the exponent is e, then the bias is 2e-1-1.  In this problem 
e=3, so the bias is computed as follows: 

23-1-1 = 22 - 1 = 3 

2. (3 points) What is the binary scientific notation value (±1.xxxx×2±Y), the true 
binary value, and the decimal value of the FLOAT8 number 01011101? 

 Biased exponent = 1012 = 5, therefore the exponent = 5 - 3 = 2 

 Binary Scientific Notation: +1.1101×22

 True Binary:   +111.01 

 Decimal:   +7.25 
 
 

3. (4 points) Show the largest possible normalized (non-infinite) positive FLOAT8 
number, and then show its value in binary scientific notation, in true binary and in 
decimal. 

 Since the number must be normalized, and cannot be infinite or NaN, the biased 
exponent cannot have all three bits set to 1.  The next smallest number is 110, or 
6.  Stripping off the bias gives a true exponent of 6 - 3 = 3.  To maximize the 
mantissa simply fill it with 1 bits. 

 FLOAT8:    

 Binary Scientific Notation: +1.1111 × 23

 True Binary:   +1111.1 

 Decimal:   +15.5 
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4. (4 points) Show the smallest possible normalized (non-denormal) positive 
FLOAT8 number, and then show its value in binary scientific notation, in true 
binary and in decimal. 

 Since the number must be normalized, and cannot be denormal or zero, the biased 
exponent cannot have all three bits set to 0.  The next largest number is 001, or 1.  
Stripping off the bias gives a true exponent of 1 - 3 = -2.  To minimize the 
mantissa simply fill it with 0 bits.  The corresponding fraction is thus 1.0000, but 
we drop the leading 1 bit in building the mantissa in order to obtain one more bit 
of precision in the stored number. 

 FLOAT8:    

 Binary Scientific Notation: +1.0000 × 2-2

 True Binary:   +0.01 

 Decimal:   +0.25 

 

5. (5 points) I loaded a FLOAT8 number from memory location Temp into R0, 
using the LDRB instruction as shown below (the upper three bytes of R0 are 
automatically set to zero).  I want to convert the FLOAT8 number into fixed point 
and put the result into integer register R1, where the implied decimal point is in 
the middle of the word (16 bits to the left of the decimal and 16 to the right).  
Assuming that the FLOAT8 number is legal, normalized, and positive (not 
infinite, NaN, or denormal), write an ARM code fragment to create the fixed point 
value in R1.  Use as many integer registers as you need, and do not worry about 
register transparency. 

 
  LDRB R0,Temp  ; R0 contains 000000XX (FLOAT8=XX) 
  MOV R2,R0,LSR #4 ; R2 contains biased exponent 
  SUB R2,R2,#3  ; R2 contains true exponent 
  AND R1,R0,#15  ; R1 contains mantissa   (0.xxxx) 
  ORR R1,R1,#16  ; R1 contains restored 1 (1.xxxx) 
  ADD R2,R2,#12  ; R2 contains 16 – 4 + exponent 
  MOV R1,R1,LSL R2 ; R1 contains final fixed point 

This is probably the hardest single problem of the exam.  It requires that you strip 
out both the biased exponent and the mantissa, un-bias the exponent, restore the 
missing 1 to the mantissa, and then shift the result into the proper place.  The 
biased exponent goes into the rightmost bits of R2, where the bias is removed by 
subtracting 3 (determined in part 1 of this question).  Everything but the mantissa 
goes into R1, because AND-ing the FLOAT8 number with 15 sets to 0 all bits 
except the rightmost four (1510 = 11112).  OR-ing that result with 16 restores the 
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missing 1-bit (1610 = 100002).  The decimal point on this value is now between 
the four bits of the mantissa and the restored 1, but it needs to be in the middle of 
the 32-bit word (with 16 bits on each side) if the exponent is zero – a difference of 
16 - 4 = 12 bit positions.  If the exponent is not zero then the value of the 
exponent needs to be added to the 12 to get the correct shift factor.  This value 
goes into R2, and R2 is finally used as the amount to shift the fraction in R1 to 
normalize it to the correct position. 

6. (3 points) Instead of doing the computations in part 5, we now wish to convert 
positive FLOAT8 numbers into fixed point through a table-lookup algorithm.  
How many bytes of memory would the table require? 

Since the FLOAT8 format is eight bits, but we are ignoring sign information, 
there are at most 27=128 possible FLOAT8 values to consider (between zero = 
00000000 and the largest NaN = 01111111).  At four bytes per word, the table 
(which contains 32-bit fixed-point values) occupies only 4 × 128 = 512 bytes of 
memory. 

In that group, there are 16 denormals and 16 values which are either infinite or 
NaN.  If those 32 values are discarded the table will only contain 128 - 32 = 96 
entries, or 4 ×  96 = 384 bytes.   

This problem does not really specify whether or not to include or discard non-
normalized values, so either answer is acceptable.  Unfortunately, the next 
problem depends on the full version of the table – restricting the size of the table 
has the side effect of requiring more than two instructions to effect the table 
lookup algorithm (checking for non-normalized values and adjusting the offsets 
into the table accordingly). 

7. (5 points) Write an ARM code fragment to convert the FLOAT8 number in R0 
into a fixed point number in R1 as you did in part 5, but this time using table 
lookup.  Call the table TABLE8.  Your solution must contain exactly two new 
lines of ARM code (one point will be removed for every extraneous instruction). 

 
  LDRB R0,Temp   ; R0 contains 000000XX
  ADR  Rx,TABLE8   ; Rx contains base address 
  LDR  R1,[Rx,R0,LSL #2] ; R1 contains fixed point 

In this solution Rx can be any otherwise unused register, including R1 itself.  
Since the FLOAT8 number is being used as an index into an array of 4-byte 
numbers (the table of fixed point values), the index must be multiplied by 4 to 
convert it from a word index into a byte index.  This is a standard array-reference 
approach on the ARM that uses the barrel shifter to shift the word index in R0 by 
2 bits in order to convert it into a byte offset without permanently changing R0. 

 

– Page 12 – 


	CMPSCI 201 – Fall 2006
	Final Exam Solution

