
CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

CMPSCI 201 – Fall 2006

Final Exam Solution
<1> 10 Points – Convert the decimal number ⅔ into single-precision floating-point

representation. Since ⅔ is a repeating fraction in both decimal and in binary, put into the
mantissa the closest possible approximation (i.e., perform rounding as needed).

 Start by converting ⅔ into true binary. If you multiply a fraction by 2, it is the same as
left-shifting the number and what was the left-most bit of the fraction shifts to the left of
the decimal point. Repeating the process successively shifts bits to the left of the
decimal. You can do this by using either vulgar fractions or explicit decimal fractions:

 Step Vulgar Decimal Bit
 0 ⅔ .666…
 1 ⅔×2=1⅓ .666…×2=1.333… 1
 2 ⅓×2=0⅔ .333…×2=0.666… 0
 3 ⅔×2=1⅓ .666…×2=1.333… 1
 4 ⅓×2=0⅔ .333…×2=0.666… 0
 … … … …

 The sequence repeats after two steps, so the fraction ⅔ is 0.1010101010… (as a side note
the fraction ⅓ is by the same technique 0.0101010101… in binary, and adding ⅓+⅔=
0.11111111111… which is exactly one in the same sense that the decimal value
0.99999999999… is also exactly equal to one).

 Converting the binary fractional representation of ⅔ into binary scientific notation gives
us 1.01010101010…×2-1, with the exponent equal to -1. The biased exponent in single
precision is 127-1=126, or 01111110 in binary. The remaining fraction (minus the
leading 1 bit) is .01010101010…, and when you place that pattern into the mantissa you
will find that the last bit kept is 0 and the first bit discarded is 1. Since the part being
discarded is greater than or equal to half the value of the last bit kept, that last (right-
most) bit is rounded up from 0 to 1. Since the original number was positive, the sign bit
is 0.

– Page 1 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<2> 5 Points – In this problem we are converting hexadecimal nybbles (values between 0 and
15) into the equivalent ASCII characters according to the given table. The “difference”
column shows the offset to add to the nybble value to convert it into the corresponding
ASCII character. In all cases 48 is added; if the nybble value is greater than 9 then 7
more is added as well.

Nybble ASCII
Value Character Value Difference
0 '0' 48 = 0110000 48
1 '1' 49 = 0110001 48
2 '2' 50 = 0110010 48
3 '3' 51 = 0110011 48
4 '4' 52 = 0110100 48
5 '5' 53 = 0110101 48
6 '6' 54 = 0110110 48
7 '7' 55 = 0110111 48
8 '8' 56 = 0111000 48
9 '9' 57 = 0111001 48
10 'A' 65 = 1000001 55 = 48 + 7
11 'B' 66 = 1000010 55 = 48 + 7
12 'C' 67 = 1000011 55 = 48 + 7
13 'D' 68 = 1000100 55 = 48 + 7
14 'E' 69 = 1000101 55 = 48 + 7
15 'F' 70 = 1000110 55 = 48 + 7

 Write a correct ARM code fragment to perform the conversion, given that the nybble
value is in register R0. The ASCII character must be returned in R0, and no other
registers may be used. Your solution may not use more than three ARM instructions (one
point will be removed for every extraneous instruction).

There are a number of approaches that can be taken, all of which compare the value in R0
against 9 or 10 and add the appropriate offset depending on the result of the comparison.
Here are a few legal solutions. In some cases we could use unsigned condition codes
instead of signed (i.e., HI and LS instead of GT and LE), since all values under
consideration fall between 0 and 15:

CMP R0,#9 CMP R0,#9
ADDLE R0,R0,#'0' ADDLE R0,R0,#48
ADDGT R0,R0,#'A'-10 ADDGT R0,R0,#55

CMP R0,#10 CMP R0,#10
ADDLT R0,R0,#'0' ADDLT R0,R0,#48
ADDGE R0,R0,#'A'-10 ADDGE R0,R0,#55

The value 48 is the same as the ASCII code for '0' and the value 55 is the value for
'A' (65) minus 10 because the first of the letters starts at input value 10 in the sequence.

– Page 2 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

The problem setup, however, was attempting to guide the thought process towards the
following solutions, which are appropriate for the subsequent exam problem:

CMP R0,#9 CMP R0,#9
ADD R0,R0,#'0' ADD R0,R0,#48
ADDGT R0,R0,#'A'-10-'0' ADDGT R0,R0,#7

In this case, we are always adding 48 (the ASCII code for '0'). If the input number
happens to be in the range 10…15, only then do we add the difference between 'A'-10
and the '0' that we already added; that difference is 7. Note that in this solution the flag
bits are set in the first instruction, ignored in the second instruction, and finally acted
upon in the third instruction. Now look at the 8-bit binary version of what is going on in
this solution:

 0000XXXX The Binary number in R0 between 0 and 15
 01100000 The 48 we are always adding
 00000111 The 7 we might add if XXXX > 9

The 1-bits of the two correction factors do not overlap, so if we have a binary adder
where one operand is 0000XXXX, we can pump in the 1-bits for the two correction
factors into the other operand without any additional logic gates (as long as we know
whether or not XXXX>9). This observation helps in the following problem.

<3> 15 Points – Now we wish to perform the previous problem in hardware. I have laid out
the overall circuit framework, but you need to fill in the boxes with the appropriate gate
logic. In the top box draw a circuit (using simple AND, OR, or NOT gates) to detect
when the Hex Nybble In contains a value that is greater than 9. In the bottom box draw
a circuit to send the correct values to the adder for when the input is greater than 9 and
when the input is less than or equal to 9 (the solution to this task is surprisingly simple,
and not all of the information coming in to this box will be required in the solution). You
will need to consult the table on the previous page.

 Before we look at the circuit solution, we first need to think about how to detect whether

or not a 4-bit number is greater than 9. All such numbers, in binary, have their #8 bit (the
leftmost bit) set to 1. Binary numbers between 10 and 15 (inclusive) will also have either
the #4 bit set or the #2 bit set, or both. Numbers less than or equal to 9 might have the #8
bit set, and either the #4 bit set or the #2 bit set, but not all at the same time. Whether or
not the #1 (rightmost) bit is set is immaterial:

 Decimal Binary Bits Set
 10 1010 #8, #2
 11 1011 #8, #2, #1
 12 1100 #8, #4
 13 1101 #8, #4, #1
 14 1110 #8, #4, #2
 15 1111 #8, #4, #2, #1

– Page 3 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

The solution to the “Hex>9” circuit is simply to AND the #8 input bit with the OR of the #4 and
#2 input bits. The only way that the output will be 1 is if the input is 8+2=10, 8+4=12, or
8+4+2=14, and since the #1 bit is ignored it also detects 8+2+1=11, 8+4+1=13, and
8+4+2+1=15.

The adder gets most of its inputs from the “Always 1” and “Always 0” lines, setting up the
pattern to always add 48 to the input nybble. The “Hex>9” line is connected to the lowest three
bits of the adder, so if “Hex>9” is 1 then the sum is increased by the additional 7 needed to
correct for the conversion between the ASCII digits and the ASCII letters. The adder handles
carries internally. In reality this circuit can be simplified even more by replacing the upper four
adder cells with half-adders instead of full-adders. Why have extra circuitry to only add zero?

– Page 4 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<4> 5 Points – In the following barrel shifter circuit, trace the path for the DATA IN 0 bit
when the shift pattern is 101 (i.e., A2=1, A1=0, A0=1), and show where that bit emerges.

Each 2:1 MUX (multiplexer) passes its top input to the output when its control line is 0,
and passes its bottom input to the output when its control line is 1. In the first (leftmost)
stage the control line is 1, so all multiplexers in that column are listening to their bottom
inputs and are ignoring their top inputs. Even though the Data In 0 bit is going to
multiplexers #0 and #4 in the first stage, only one of them (#4) passes that value on, to
multiplexers #2 and #4 in the second stage. All multiplexers in the second stage are
listening to their top inputs since the control line is 0, so multiplexer #4 in the second
stage passes its top input on to multiplexers #3 and #4 in the third stage. All multiplexers
in the third stage are listening to their bottom inputs since the control line is 1, so #3
passes its bottom input to the output, Data Out 3.

<5> 5 Points – Does the above circuit perform a left shift, a right shift, a left rotate, or a right
rotate? (Consider bit position 0 to be rightmost and bit position 7 to be leftmost.)

 The value input into Data In 0 appears in the output at Data Out 3, and because all data
bits appear at the output offset from the input by the same amount this must be a rotate
rather than a shift. Only if a 0 or 1 was always pumped in at one end or the other (thus
losing data bits) would this be a shift. The immediate inference to draw is that this is a
left-rotate-by-3, but since the control lines are 1-0-1, which has the binary value 5, this is
actually a right-rotate-by-5.

– Page 5 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<6> 5 Points – I want to compute the polynomial 2x2-3x+10 using the floating point registers.
The value for x is in F0, and the result must appear in F1. EXTRA CREDIT: +5 points
if you modify no register other than F1 in your solution.

The constants in this problem were chosen so that they are all legal values as the
immediate portion of an ARM floating point instruction (the only legal immediate
floating point constants are 0.5, 0.0 through 5.0, and 10.0). Remember that shifting is not
allowed on the floating point side of the processor.

The easiest brute-force solution is to burn another register, such as F2, in order to hold
temporary values.

 MUFS F1,F0,F0 ; F1 X2

 MUFS F1,F1,#2.0 ; F1 2X2

 MUFS F2,F0,#3.0 ; F2 3X
 SUFS F1,F1,F2 ; F1 2X2 – 3X
 ADFS F1,F1,#10.0 ; F1 2X2 – 3X + 10

For extra credit, no extra registers may be used. Here is one approach, which requires
multiple subtracts to perform the -3X portion.

 MUFS F1,F0,F0 ; F1 X2

 ADFS F1,F1,F1 ; F1 2X2

 SUFS F1,F1,F0 ; F1 2X2 - X
 SUFS F1,F1,F0 ; F1 2X2 - 2X
 SUFS F1,F1,F0 ; F1 2X2 - 3X
 ADFS F1,F1,#10.0 ; F1 2X2 - 3X + 10

Here is another extra credit approach, which requires that Horner’s rule be applied to
convert the polynomial from 2x2 – 3x + 10 into (2x – 3)x + 10, thus greatly simplifying
the solution (two variants shown).

 MUFS F1,F0,#2.0 ; F1 2X
 SUFS F1,F1,#3.0 ; F1 2X - 3
 MUFS F1,F1,F0 ; F1 2X2 - 3X
 ADFS F1,F1,#10.0 ; F1 2X2 – 3X + 10

 ADFS F1,F0,F0 ; F1 2X
 SUFS F1,F1,#3.0 ; F1 2X - 3
 MUFS F1,F1,F0 ; F1 2X2 - 3X
 ADFS F1,F1,#10.0 ; F1 2X2 – 3X + 10

– Page 6 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<7> 10 Points – Trace the following “walking ring” counter through several clock cycles,
starting with all flip-flops set to zero. Will all possible states occur during the count? If
not, which states will not occur?

Clock Q2 Q1 Q0
0 0 0 0
1 1 0 0
2 1 1 0
3 1 1 1
4 0 1 1
5 0 0 1
6 0 0 0
7 1 0 0
8 1 1 0

Even though there are three flip-flops, not all of the 23=8 possible states appear in the
table. The sequence repeats after six clocks. The only patterns which do not appear are
010 and 101. If either pattern is forced into the walking-ring counter through external
means (i.e., through the set or clear inputs on the flip-flops), the two patterns will
alternate on every clock cycle (010, to 101, to 010, forever).

Note that a two-flip-flop walking-ring counter will clock through all four of its legal
states, but any longer walking-ring counter will not clock though all possible states. The
degenerate case is that a one-flip-flop walking-ring counter is the same as a toggle flip-
flop, which alternates its output on every clock cycle.

– Page 7 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<8> 10 Points – An ARM instruction sets the status bits as follows: N=1, V=0, C=1 and Z=0.
The next instruction has the condition code 1101. Trace the circuit below and determine,
yes-or-no, if this new instruction will execute or not. Show the output of every gate.

The condition code 1101 means that input #13 on the multiplexer is the one that will be
passed on to the output. Regardless of their values, the other multiplexer inputs are
ignored. By tracing the circuit from the known values of the status bits, we determine
that multiplexer input #13 is 1 (from the OR-gate), so yes, this instruction will execute.

– Page 8 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<9> 10 Points – Examine the memory grid below. With N=15, M=7, and B=24, then…

1. …how many address lines are there? (2 points)

 N + M = 15 + 7 = 22

2. …how many word lines are there? (2 points)

 2N = 215 = 32,768

3. …how many bit lines are there? (2 points)

 B × 2M = 24 × 27 = 3 × 23 × 27 = 3 × 210 = 3 × 1024 = 3072

4. …how many memory bits are there? (2 points)

 215 word lines × 24 × 27 bit lines = 24 × 222 = 3 × 225 = 100,663,296

 32768 × 3072 = 100,663,296

5. …how many bytes of memory are there? (2 points)

 2N+M addresses × 3 bytes per address = 222× 3 = 3 × 4,194,304 = 12,582,912 bytes

– Page 9 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

<10> 25 Points – In this final set of problems we have invented a new floating-point
format that fits entirely into an 8-bit byte. In this representation, which we will call
FLOAT8, there is one bit reserved for the sign (as usual), three bits for the biased
exponent, and four bits for the mantissa. Plus-infinity is 01110000, positive
denormalized numbers are of the form 0000xxxx (for xxxx not all zero), and zero is
00000000.

1. (1 point) What is the bias value for the FLOAT8 format?

If the number of bits in the exponent is e, then the bias is 2e-1-1. In this problem
e=3, so the bias is computed as follows:

23-1-1 = 22 - 1 = 3

2. (3 points) What is the binary scientific notation value (±1.xxxx×2±Y), the true
binary value, and the decimal value of the FLOAT8 number 01011101?

 Biased exponent = 1012 = 5, therefore the exponent = 5 - 3 = 2

 Binary Scientific Notation: +1.1101×22

 True Binary: +111.01

 Decimal: +7.25

3. (4 points) Show the largest possible normalized (non-infinite) positive FLOAT8
number, and then show its value in binary scientific notation, in true binary and in
decimal.

 Since the number must be normalized, and cannot be infinite or NaN, the biased
exponent cannot have all three bits set to 1. The next smallest number is 110, or
6. Stripping off the bias gives a true exponent of 6 - 3 = 3. To maximize the
mantissa simply fill it with 1 bits.

 FLOAT8:

 Binary Scientific Notation: +1.1111 × 23

 True Binary: +1111.1

 Decimal: +15.5

– Page 10 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

4. (4 points) Show the smallest possible normalized (non-denormal) positive
FLOAT8 number, and then show its value in binary scientific notation, in true
binary and in decimal.

 Since the number must be normalized, and cannot be denormal or zero, the biased
exponent cannot have all three bits set to 0. The next largest number is 001, or 1.
Stripping off the bias gives a true exponent of 1 - 3 = -2. To minimize the
mantissa simply fill it with 0 bits. The corresponding fraction is thus 1.0000, but
we drop the leading 1 bit in building the mantissa in order to obtain one more bit
of precision in the stored number.

 FLOAT8:

 Binary Scientific Notation: +1.0000 × 2-2

 True Binary: +0.01

 Decimal: +0.25

5. (5 points) I loaded a FLOAT8 number from memory location Temp into R0,
using the LDRB instruction as shown below (the upper three bytes of R0 are
automatically set to zero). I want to convert the FLOAT8 number into fixed point
and put the result into integer register R1, where the implied decimal point is in
the middle of the word (16 bits to the left of the decimal and 16 to the right).
Assuming that the FLOAT8 number is legal, normalized, and positive (not
infinite, NaN, or denormal), write an ARM code fragment to create the fixed point
value in R1. Use as many integer registers as you need, and do not worry about
register transparency.

 LDRB R0,Temp ; R0 contains 000000XX (FLOAT8=XX)
 MOV R2,R0,LSR #4 ; R2 contains biased exponent
 SUB R2,R2,#3 ; R2 contains true exponent
 AND R1,R0,#15 ; R1 contains mantissa (0.xxxx)
 ORR R1,R1,#16 ; R1 contains restored 1 (1.xxxx)
 ADD R2,R2,#12 ; R2 contains 16 – 4 + exponent
 MOV R1,R1,LSL R2 ; R1 contains final fixed point

This is probably the hardest single problem of the exam. It requires that you strip
out both the biased exponent and the mantissa, un-bias the exponent, restore the
missing 1 to the mantissa, and then shift the result into the proper place. The
biased exponent goes into the rightmost bits of R2, where the bias is removed by
subtracting 3 (determined in part 1 of this question). Everything but the mantissa
goes into R1, because AND-ing the FLOAT8 number with 15 sets to 0 all bits
except the rightmost four (1510 = 11112). OR-ing that result with 16 restores the

– Page 11 –

CMPSCI 201 – Fall 2006 – Final Exam – Professor William T. Verts

missing 1-bit (1610 = 100002). The decimal point on this value is now between
the four bits of the mantissa and the restored 1, but it needs to be in the middle of
the 32-bit word (with 16 bits on each side) if the exponent is zero – a difference of
16 - 4 = 12 bit positions. If the exponent is not zero then the value of the
exponent needs to be added to the 12 to get the correct shift factor. This value
goes into R2, and R2 is finally used as the amount to shift the fraction in R1 to
normalize it to the correct position.

6. (3 points) Instead of doing the computations in part 5, we now wish to convert
positive FLOAT8 numbers into fixed point through a table-lookup algorithm.
How many bytes of memory would the table require?

Since the FLOAT8 format is eight bits, but we are ignoring sign information,
there are at most 27=128 possible FLOAT8 values to consider (between zero =
00000000 and the largest NaN = 01111111). At four bytes per word, the table
(which contains 32-bit fixed-point values) occupies only 4 × 128 = 512 bytes of
memory.

In that group, there are 16 denormals and 16 values which are either infinite or
NaN. If those 32 values are discarded the table will only contain 128 - 32 = 96
entries, or 4 × 96 = 384 bytes.

This problem does not really specify whether or not to include or discard non-
normalized values, so either answer is acceptable. Unfortunately, the next
problem depends on the full version of the table – restricting the size of the table
has the side effect of requiring more than two instructions to effect the table
lookup algorithm (checking for non-normalized values and adjusting the offsets
into the table accordingly).

7. (5 points) Write an ARM code fragment to convert the FLOAT8 number in R0
into a fixed point number in R1 as you did in part 5, but this time using table
lookup. Call the table TABLE8. Your solution must contain exactly two new
lines of ARM code (one point will be removed for every extraneous instruction).

 LDRB R0,Temp ; R0 contains 000000XX
 ADR Rx,TABLE8 ; Rx contains base address
 LDR R1,[Rx,R0,LSL #2] ; R1 contains fixed point

In this solution Rx can be any otherwise unused register, including R1 itself.
Since the FLOAT8 number is being used as an index into an array of 4-byte
numbers (the table of fixed point values), the index must be multiplied by 4 to
convert it from a word index into a byte index. This is a standard array-reference
approach on the ARM that uses the barrel shifter to shift the word index in R0 by
2 bits in order to convert it into a byte offset without permanently changing R0.

– Page 12 –

	CMPSCI 201 – Fall 2006
	Final Exam Solution

