
CMPSCI 201 – Fall 2006
Professor William T. Verts

Assignment #5 – Array and Graphics
EXTRA CREDIT

In this assignment you are to extend the program in assignment #4 to include the
framework for a simple graphics system using text characters as pixels. The basic graphics
screen will be 32 raster lines (rows) by 96 pixels per line (columns) so that it will fit on the
screen of the ARM debugger. Each pixel will occupy a single bit of a word, so each memory
word will contain 32 packed pixels. Thus, the entire memory footprint of the graphics “screen”
will be a two-dimensional array containing 96 words, using three words per raster line.

Following this paragraph are new symbols to include at the beginning of your program.
You must use these symbols in your code instead of special constants; I want to be able to
change the Rows and Columns definitions and still have your program work after assembly
with the new values. Note that Cols represents the number of 32-bit words per raster line, not
the number of pixels. (You may use the explicit constant 32 when dealing with the number of
bits per integer word, but not as the number of raster rows.)

Rows EQU 32 ; Total rows of text
Cols EQU 3 ; Memory words per row
MaxRow EQU Rows-1 ; Maximum allowed Row
MaxCol EQU Cols*32-1 ; Maximum allowed Col
Words EQU Rows*Cols ; Total words to reserve
Bytes EQU Words*4 ; Total bytes to reserve

Add new subroutine frames called Set_Pixel, Clear_Screen, and
Print_Screen to the end of your program. Declare the Screen array representing the
graphics display directly after these three subroutines (by declaring it there it will be within
LDR/STR range of Set_Pixel) with:

Screen % Bytes

Neither the Clear_Screen nor the Print_Screen subroutines require any
parameters. The Clear_Screen routine clears the Screen array to all zeroes, and the
Print_Screen routine prints out the screen as 32 rows of 96 characters per row (using a
modified version of Print_Binary, described later).

The Set_Pixel subroutine gets two input parameters through the registers: register R0
contains the X value (column) and register R1 contains the Y value (row) of the pixel bit to be
set to 1. The upper-left pixel is at location <0,0>. X and Y values must be clipped to the
screen; i.e., if the X and Y values are off-screen (X less than zero or greater than MaxCol, or Y
less than zero or greater than MaxRow) then no pixel will be set.

You may not add other global symbols, code, or variables. All subroutines are required
to be transparent with respect to register usage and must use the stack for temporary register
storage.

Modify your existing Print_Binary routine to print “.” instead of “0” and “*”
instead of “1”. Modify Plot_Line to call Set_Pixel to draw a straight line on the grid
between the two endpoints passed in (instead of just printing out the endpoints as numbers). The
Plot-Line routine is fairly tricky to implement correctly, but there are several approaches that
can be used.

Your main program must first call Clear_Screen, then DeCasteljau (to plot the
Bézier curve with the values from the previous assignment), and finally Print_Screen.

When working, print out the .ALI assembly listing and a screenshot containing the
source code after execution with your name visible, and the console window showing the
resulting graphics screen. The graphics screen will occupy most of the window. Staple the
screenshot on top of the listing. Here are the point penalties for this 20-point assignment (no
assignment will score less than zero):

 1. -5 for cosmetic errors: printouts not stapled, or screenshot not on top.
 2. -20 for name not visible on .ALI listing (did you write the code?)
 3. -5 for not printing the screen at all (does Print_Screen work?)
 4. -5 for not correctly painting the Bézier curve (Clear_Screen & Set_Pixel)
 5. -5 for non-transparent subroutines (are registers saved and restored?)
 6. -5 for using explicit memory locations (did you use the stack?)

 The final score will be treated as extra credit.

“EXTRA” EXTRA CREDIT

Each of these suggestions is optional and worth an additional +5 points when
implemented correctly. You must test all new code to show that it works completely, showing
appropriate screenshots in each case.

1. Implement Outlined Circles

Write a subroutine called Outline_Circle so that it will draw a circle centered at
coordinate <X,Y> with radius R. The values are passed in through integer registers R0, R1, and
R2, where R0=X, R1=Y, and R2=R. Here is a pseudocode template for creating outlined circles:

 Procedure Outline_Circle (X,Y,R:Integer)
 Var XX, YY, SS : Integer { Local variables }
 Begin
 XX := R
 YY := 0
 SS := -R
 While (XX >= YY) Do
 Begin
 Set_Pixel (X+XX, Y+YY)
 Set_Pixel (X-XX, Y+YY)
 Set_Pixel (X+XX, Y-YY)
 Set_Pixel (X-XX, Y-YY)
 Set_Pixel (X+YY, Y+XX)
 Set_Pixel (X-YY, Y+XX)
 Set_Pixel (X+YY, Y-XX)
 Set_Pixel (X-YY, Y-XX)
 SS := SS + YY + YY + 1
 YY := YY + 1
 If SS > 0 Then
 Begin
 SS := SS – XX – XX + 2
 XX := XX - 1
 End
 End
 End

2. Implement Horizontal_Line

Write a subroutine called Horizontal_Line to plot horizontal lines from coordinate
<X1,Y> to coordinate <X2,Y>. In this case the coordinates are passed in through integer
registers R0, R1, and R2, where R0=X1, R1=X2, and R2=Y. As usual, all registers must be
preserved (on the stack).

3. Implement Solid Circles

Write a subroutine called Solid_Circle so that it will draw a circle centered at
coordinate <X,Y> with radius R. The values are passed in through integer registers R0, R1, and
R2, where R0=X, R1=Y, and R2=R. Here is a pseudocode template for creating solid circles:

 Procedure Solid_Circle (X,Y,R:Integer)
 Var XX, YY, SS : Integer { Local variables }
 Begin
 XX := R
 YY := 0
 SS := -R
 While (XX >= YY) Do
 Begin
 Horizontal_Line (X-XX, X+XX, Y-YY)
 Horizontal_Line (X-XX, X+XX, Y+YY)
 Horizontal_Line (X-YY, X+YY, Y-XX)
 Horizontal_Line (X-YY, X+YY, Y+XX)
 SS := SS + YY + YY + 1
 YY := YY + 1
 If SS > 0 Then
 Begin
 SS := SS – XX – XX + 2
 XX := XX - 1
 End
 End
 End

	1. Implement Outlined Circles
	2. Implement Horizontal_Line
	3. Implement Solid Circles

