
CMPSCI 201 – Fall 2006
Professor William T. Verts

Assignment #4 – Recursive Bézier Curves
The purpose of this exercise is to demonstrate your understanding of (nearly) everything

we have covered throughout the semester. You will be graded on formatting and style, as well as
on the correct operation of your program. We will be looking closely at efficiency of register
usage, parameter passing mechanisms, use of symbolic labels as stack-offset constants, selection
of appropriate variable names, thoroughness of commentary, etc., etc. We expect people to
spend a considerable amount of time getting the appearance of their programs correct.

The problem we will solve is the computation of the points along a Bézier curve (a
piecewise parametric cubic polynomial), using a technique called “DeCasteljau’s Algorithm.”
Four points in space define a Bézier curve; P0 and P3 are the end-points; P1 is P0’s control
point, and P2 is P3’s control point. The curve starts at P0, approaches but does not pass through
P1 and P2, and finally ends at P3. At each end-point, the curve is tangent to a line between that
end-point and its corresponding control point, as you see in the image.

Bézier curves are used in graphics design because several of them can be stacked end-to-
end; two curves will flow smoothly into each other only so long as there is a single line that
passes through the common end-points and both of the corresponding control points. The
equations (one for each dimension) are cubic polynomials of the form p(t) = at3 + bt2 + ct + d,
where the coefficients a, b, c, and d for each equation are computed from the appropriate
coordinates of the four points as follows:

a = p3 – 3p2 + 3p1 – p0
b = 3p2 – 6p1 + 3p0
c = 3p1 – 3p0
d = p0

Pseudo-Code

The DeCasteljau approach is computationally much simpler than polynomial evaluation
(although it does use recursion). A pseudo-code procedure to show the general algorithm for two
dimensions is as follows (each Point variable contains an x and a y coordinate value):

 Procedure DeCasteljau (P0,P1,P2,P3:Point)

 Var P01 : Point { Local mid-point variable }
 P12 : Point { Local mid-point variable }
 P23 : Point { Local mid-point variable }
 P012 : Point { Local mid-point variable }
 P123 : Point { Local mid-point variable }
 P0123: Point { Local mid-point variable }

 Begin
 If Distance(P0,P3) < Threshold Then
 Plot_Line (P0, P3)
 Else
 Begin
 P01 := (P0 + P1) / 2
 P12 := (P1 + P2) / 2
 P23 := (P2 + P3) / 2
 P012 := (P01 + P12) / 2
 P123 := (P12 + P23) / 2
 P0123 := (P012 + P123) / 2
 DeCasteljau (P0, P01, P012, P0123)
 DeCasteljau (P0123, P123, P23, P3)
 End
 End

The advantage to this algorithm for graphics is that it can be written to use nothing but
integers (and shifts for the divisions by two), since pixel positions on screen always use integer
coordinates. For this assignment, however, you are to treat the point coordinates and the
threshold value as single-precision floating-point numbers. Each Point in the pseudo-code
above is two coordinate values x and y, so point P0 really represents two values P0X and P0Y,
for example. Thus, the DeCasteljau procedure is called with eight floating-point numbers as
parameters (P0X, P0Y, P1X, P1Y, P2X, P2Y, P3X, and P3Y).

Program Structure

This section describes both the basic layout of your program and the expected contents of
each of the routines you must write. Follow these guidelines carefully; they will not only guide
your design, they will also make debugging and grading much easier than otherwise possible.

Main Program

Your main program will call DeCasteljau with the coordinates of four points (eight
single precision floating-point numbers) passed on the stack as call-by-value. Upon exit from
the subroutine the parameters are discarded, and then the program ends.

Variables

Due to distance limits on the ARM between any LDR instruction and the variable it
references, all global memory variables should appear between the main driver program and the
DeCasteljau subroutine. The only global variables allowed are the initial values of the eight
floating-point numbers loaded onto the stack before the initial call to DeCasteljau (and never
used in any other context), and the Threshold value used by the DeCasteljau routine
itself. The numbers are defined by the DCFS pseudo-instruction with initial values as follows:

 P0X DCFS 0.0
 P0Y DCFS 0.0
 P1X DCFS 15.0
 P1Y DCFS 0.0
 P2X DCFS 0.0
 P2Y DCFS 15.0
 P3X DCFS 15.0
 P3Y DCFS 15.0
 Threshold DCFS 1.0

DeCasteljau

Convert the pseudo-code procedure into ARM assembly code and get it running. The
DeCasteljau routine is recursive, has local variables, and uses the stack heavily. All memory
references, save one, are to and from the stack. The only reference to a global variable allowed
here is to Threshold; you may not ever reference directly the original point values in memory
in this routine. A (strongly suggested) stack frame layout appears at the end of this document.

Distance

The Distance function has four arguments passed (by value) to it via floating-point
registers F0, F1, F2, and F3. These arguments represent arbitrary points in the plane <x1,y1>
and <x2,y2>, respectively. The routine computes and returns the Euclidean distance between the
points as Sqrt((x2-x1)2+(y2-y1)2) in floating register F0 (register F0 has dual use as a
call-by-value input parameter and as a call-by-return output result).

Plot_Line

The Plot_Line procedure is passed (by value) two points <x1,y1> and <x2,y2>, via
floating-point registers F0, F1, F2, and F3, respectively. It then truncates the four arguments to
integer form, calls Print_Signed four times, along with some extra characters printed for
clarity, and finally calls Print_LF to end the current line. The printed result for a call such as

Plot_Line(2.7, 3.6, 5.2, 7.1) must be <+2,+3> -- <+5,+7>, for example.
The two printed points might be to the same “pixel” (or to adjacent pixels).

Print_Number, Print_LF, etc.

Copy your code for the Print_Signed, Print_Unsigned, Print_Blank, and
Print_LF routines from the previous assignment, along with helper routine UDiv10. You
will not need Print_Binary, Print_Word, or Print_Nybble. You may not change the
definitions of any of these routines. You may improve the code of these routines as necessary,
but their functionality must not be altered from the previous assignment. To support
Plot_Line, you must create new subroutines here called Print_Dash, Print_Less,
Print_Greater, and Print_Comma to print the appropriate characters.

General Layout and Rules

The main program will be followed by the variables, the DeCasteljau procedure, the
Euclidean Distance function, the Plot_Line procedure, the printing routines you developed
in the previous assignment, and all new printing routines. Items must appear in this order:

1. main driver (program)
2. global variables (nine floating-point numbers)
3. DeCasteljau (new subroutine)
4. Distance (new subroutine)
5. Plot_Line (new subroutine)
6. Print_Signed (old subroutine)
7. Print_Unsigned (old subroutine)
8. Print_LF (old subroutine)
9. Print_Blank (old subroutine)
10. Print_Dash (new subroutine)
11. Print_Less (new subroutine)
12. Print_Greater (new subroutine)
13. Print_Comma (new subroutine)
14. UDiv10 (old subroutine)

No subroutine may reference any values on the stack outside of their own local stack
frame. For example, when DeCasteljau calls Distance, the Distance subroutine may
not reach deep into the stack to get at DeCasteljau’s variables. All subroutines must be
transparent in all registers used, as usual.

You must submit a screenshot showing that the program has been run and belongs to you.
It must contain enough of the source code to show your name and with the execution bar on the
SWI &11 instruction. The console window must show the output lines printed by
Plot_Line. You must also show the sixteen integer registers and the eight floating-point
registers. Staple your complete .ALI listing file to the screenshot.

Stack Frame for DeCasteljau

In order to help you design your program, and get the parameter passing mechanism set
up correctly, I recommend the following stack layout for the calls to DeCasteljau.
Remember that in the ARMulator the IP register is specified in lower case as the ip register.

	Pseudo-Code
	Program Structure
	Main Program
	Variables
	DeCasteljau
	Distance
	Plot_Line
	Print_Number, Print_LF, etc.

	General Layout and Rules
	Stack Frame for DeCasteljau

