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CMPSCI 201 – Fall 2005 

Midterm #2 Solution 
Professor William T. Verts 

<1> 10 Points – Convert the decimal number -47.375 into (a) binary scientific notation (i.e., 
±1.xxxx×2Y), and (b) the equivalent binary single-precision floating-point representation. 

 In binary, -47.375 is -101111.011, which is -1.01111011×25.  The sign bit is 1 because 
the number is negative, the leading 1 (to the left of the decimal point) is dropped from the 
significant digits to form the mantissa, and the exponent 5 is added to the bias 127 to get 
the biased exponent 132 (100001002). 

 

<2> 10 Points – The following code shows a data table defined for the ARM containing all 13 
possible factorial values that fit into a 32-bit integer.  Write an ARM code fragment (not 
a complete routine) that replaces the integer value in R0 with its factorial from the table 
(i.e., R0 ← R0!).  Use any auxiliary registers you need, and don’t worry about register 
transparency.  Your code must return zero for any value outside the range from 0 to 12. 

 
 TABLE DCD 1  ; 0! 
   DCD 1  ; 1! 
   DCD 2  ; 2! 
   DCD 6  ; 3! 
   DCD 24  ; 4! 
   DCD 120  ; 5! 
   DCD 720  ; 6! 
   DCD 5040  ; 7! 
   DCD 40320 ; 8! 
   DCD 362880 ; 9! 
   DCD 3628800 ; 10! 
   DCD 39916800 ; 11! 
   DCD 479001600 ; 12! 

The pseudo-code for this problem is as follows: 
   If (R0 >= 0) And (R0 <= 12) Then 
    R0  Table[R0] 
   Else 
    R0  0 
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 The core code is an array reference using R0 as the index.  Thus, half the credit is 
assigned to the following two lines of code: 

   ADR R2,TABLE 
   LDR R0,[R2,R0,LSL #2] 

 The ADR pseudo-instruction puts the base address of TABLE into R2.  Remember that the 
LSL #2 is to convert the array index into a byte offset, since each storage cell is four 
bytes long. 

 The rest of this problem is to filter out illegal values.  One approach is to explicitly test 
for the low and high values: 

   CMP R0,#0 
   BLT Illegal 
   CMP R0,#12 
   BGT Illegal 

 Another is to perform what is essentially an unsigned comparison on a signed value: 
   CMP R0,#13 
   BHS Illegal ; (Branch on High or Same) 

 In this case, all negative values are treated as very large unsigned values, and can be 
eliminated at the same time as too-large positives.   

The final expected code is then either of the following approaches: 
   CMP R0,#0 
   BLT Illegal 
   CMP R0,#12   CMP R0,#13 
   BGT Illegal   BHS Illegal  
   ADR R2,TABLE 
   LDR R0,[R2,R0,LSL #2]     
   B Done 
 Illegal MOV R0,#0  
 Done  … 

<3> 10 Points – In each of the following problems you are to multiply the contents of integer 
register R0 by a constant value, in one instruction, without using any other registers, and 
without using any explicit multiplication instruction such as MUL, MLA, or UMULL.  For 
all questions you may assume that the initial value in R0 is positive. 

1. R0 := R0 × 15   RSB R0,R0,R0,LSL #4 

2. R0 := R0 × 16   MOV R0,R0,LSL #4 

3. R0 := R0 × 17   ADD R0,R0,R0,LSL #4 

4. R0 := R0 × 1¼   ADD R0,R0,R0,LSR #2 

5. R0 := R0 × ¾   SUB R0,R0,R0,LSR #2 
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<4> 10 Points – For this problem you will need to use the MUL RD,RM,RS instruction.  The 
MUL instruction cannot multiply by constants (only registers), and RD cannot be the same 
register as RM (i.e., MUL R0,R0,R1 is illegal, but MUL R0,R1,R0 is OK).  Create a 
complete ARM subroutine to evaluate the integer polynomial y = 9x2 + 4x + 5, where the 
value of x is passed in through R0 and the result y is passed back through R1.  You must 
maintain full transparency on all used registers, except for R1, LR, and IP. 

 As it turns out, no registers need to be explicitly saved in order to perform this 
subroutine.  The destination register R1 can be used in all calculations, along with the 
barrel-shifter, and no other temporaries are necessary.  Since this subroutine doesn’t call 
other subroutines, the LR doesn’t need to be saved and restored.  Saving registers is OK, 
but if you do then they must be restored properly.  Here is the expected code: 

 
  Subroutine 
   MUL R1,R0,R0   ; R1  R02 
   ADD R1,R1,R1,LSL #3 ; R1  9R02 
   ADD R1,R1,R0,LSL #2 ; R1  9R02 + 4R0 
   ADD R1,R1,#5   ; R1  9R02 + 4R0 + 5 
   MOV PC,LR   ; Return 

<5> 5 Points – In the shift register random number generator shown here, the current value 
(from left to right) is 111001.  Show the contents of the register after each of the next five 
clock cycles. 

1. 0  1  1  1  0  0 

2.  1  0  1  1  1  0 

3.  0  1  0  1  1  1 

4.  0  0  1  0  1  1 

5.  1  0  0  1  0  1 
 

<6> 5 Points – Short Answer – Explain the difference in action between the following two 
ARM instructions. 

 
  STR R0,[SP,#-4] 
 
  STR R0,[SP,#-4]! 
 

The first does not update the stack pointer (SP), but simply stores into the free area below 
the stack top (remember that stacks grow downwards).  The second updates the stack 
pointer after storage, creating a true stack push. 
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<7> 10 Points – Rewrite the following code fragment to perform the same task in fewer 
instructions.  The purpose is to replace the value in R0 with +1 for positive numbers, -1 
for negative numbers, and 0 for 0 (this is called the signum or SGN function). 

 
    CMP R0,#0 
    BLT Small 
    BGT Big 
    MOV R0,#0 
    B   Done 
  Small MOV R0,#-1 
    B   Done 
  Big   MOV R0,#1 
  Done  … 

 Conditional execution is the key to reducing the code.  The CMP is still necessary, since 
we do not know what went on before this code snippet that may or may not have 
modified the flag bits.  Afterwards, MOV instructions are used to put the correct value into 
R0 based on which of those bits have been set or cleared: 

 
    CMP   R0,#0 
    MOVLT R0,#-1 
    MOVGT R0,#1 

 A third MOV to set the value of R0 to zero (MOVEQ R0,#0) is not necessary since the 
only condition where neither the MOVLT nor the MOVGT get triggered is when R0 is 
already zero. 

 The problem with this code as it stands is whether or not the -1 constant can be created 
directly.  It can’t, not by selecting a value in the range 0…255 and then right-rotating it 
by any arbitrary number of bits.  It can be created, however, by using the MVN (move 
negative) command to move the 1’s complement of the specified value into the register.  
The value -1 is represented by all 1 bits, so moving the 1’s complement of 0 into the 
register will do the same thing.  Thus, the “proper” code is: 

 
    CMP   R0,#0 
    MVNLT R0,#0 ; -1 by 1’s complement of 0 
    MOVGT R0,#1 

 However, it doesn’t take too much work to create a “smart” assembler that replaces an 
assembly language instruction MOV of -1 with the binary equivalent to a MVN of 0.   

Thus, either form is considered correct for this problem. 
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<8> 10 Points – Examine the memory grid below.  With N=6, M=10, and B=8, then… 

 

1. …how many address lines are there? (2 points) 

  N+M = 16 

2. …how many word lines are there? (2 points) 

  2N = 26 = 64 

3. …how many bit lines are there? (2 points) 

  B×2M = 8×210 = 8×1024 = 23×210 = 213 = 8192 

4. …how many memory bits are there? (2 points) 

  26 word lines × 213 bit lines = 219 bits = 512K = 524288 

5. …how many bytes of memory are there (2 points) 

  2N+M = 216 = 64K = 65536 
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<9> 20 Points – In this question we are inventing a new floating-point format that follows 
many of the basic ideas behind the IEEE-754 rules.  In this format, numbers are 128 bits 
in length, and occupy four successive 32-bit integer words of storage (little endian).  The 
most significant word contains the sign bit and 31 bits of biased exponent; the other three 
words contain the 96-bit mantissa.  This layout is shown below: 

  
 

The range of numbers is thus between ±1.0×2-e and ±1.FFFF…FFF×2+e (ignoring 
infinity, NaNs, and denormals of the form ±0.xxxxx…xxx×2-e), for some value of e. 

 
A. (2 points) What is the decimal value of the bias? 
 
 2N-1-1, where N=31 (the number of bits in the exponent), which is 230-1 = 1,073,741,823. 
 
B. (2 points) What is the decimal range of valid exponent values? 
 
 I expected that people would figure out the power of ten available, which is 

Log10(21,073,741,823), or 10±323228496.  This was interpreted by some students as the decimal 
value of the binary unbiased exponent, or between -1,073,741,823…+1,073,741,824, 
which was acceptable. 

 
C. (2 points) Approximately how many decimal digits of precision can be represented with 

this floating-point format? 
 
 Since there are 96 bits of mantissa available, but the leading 1-bit of the binary number is 

dropped, the precision is 97 total bits.  Thus the number of decimal digits is log10(297), 
which is 29.1999…, or 29 digits. 

 
D. (2 points) What is the hexadecimal value of the floating-point number -12.125 in this 

format?  Show breaks between the four words of your answer as follows: 
   xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 
   Base+12  Base+8   Base+4   Base+0 
 
 The number in binary scientific notation is -1.100001×23.  The sign bit is 1 since the 

number is negative, the stored mantissa is 100001000…000, and the exponent without 
the bias is 3.  In hex, the number is then: 

   C0000002 84000000 00000000 00000000 
 

– Page 6 – 



CMPSCI 201 – Fall 2005 – Midterm #2 – Professor William T. Verts 

E. (12 points) Write a chunk of ARM code using the model shown (where symbol BASE is 
defined as the address of the first of the four successive words of memory) to compute an 
estimate of the square root of the stored number.  Use only integer registers R0 through 
R11 in your answer; no floating point registers.  You may assume that the sign bit is 0 to 
avoid issues with imaginary numbers.  To compute your estimate you must divide the 
signed exponent by 2 as we have done in previous examples (discarding any remainder 
from the division), but this time you must also divide the mantissa by 2 instead of simply 
setting it to zero.  Thus, for non-zero binary floating-point values of the form 
1.abcd…xyz×2e, the approximation we want is 1.0abcd…wxy×2e/2.  (Hint: you 
may have to do some thinking and/or research about shifting and rotating values in ways 
we haven’t discussed in class, as well as for the generation of some of the constants used 
by your routine.) 

 
 ADR  R5,BASE  ; Get address of array start 
 LDR  R1,BIAS  ; Get bias (however defined) 
 LDR  R0,[R5,#12] ; Load sign/exponent word 
 SUB  R0,R0,R1  ; Subtract the bias 
 MOVS  R0,R0,LSR #1 ; Divide by 2… 
 ADCMI R0,R0,#0  ; …and correct for odd negatives 
 ADD  R0,R0,R1  ; Add the bias 
 STR  R0,[R5,#12] ; Store back into sign/exponent 
 
 LDR  R0,[R5,#8] ; Load most significant mantissa word 
 MOVS  R0,R0,LSR #1 ; Divide it by 2, remainder goes to C 
 STR  R0,[R5,#8] ; Store most significant mantissa word 
 
 LDR  R0,[R5,#4] ; Load next mantissa word 
 MOVS  R0,R0,RRX ; Rotate C into left, rightmost into C 
 STR  R0,[R5,#4] ; Store next mantissa word 
 
 LDR  R0,[R5,#0] ; Load least significant mantissa word 
 MOVS  R0,R0,RRX ; Rotate C into left, rightmost into C 
 STR  R0,[R5,#0] ; Store least significant mantissa word 
 
 … 
 
BIAS DCD  1073741823 

The MOVS R0,R0,RRX is the piece we hadn’t discussed in class, but was in the ARM 
instruction reference.  The RRX stands for “Rotate Right eXtended” which shifts the 
current value of the carry flag C into the left end of the word, and the rightmost bit of that 
word is shifted out to become the new value of the carry flag.  Thus, the carry is used to 
shift a bit out of one word into the next, implementing a multiple precision shift. 
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<10> 10 Points – Essay answer – Here are three ways of handling stack frames for subroutines.  
The three subroutines have identical purposes and internal functions, except for the 
offsets used in referencing their parameters and local variables.  In all three cases there 
are parameters pushed onto the stack before the call, and inside each subroutine the 
registers R0, R1, R2, R3, IP, and LR are pushed on the stack, as well as three words of 
storage reserved for local variables (represented by the SUB SP,SP,#12 instruction).  
Your answer to this problem doesn’t require knowing exactly how many parameters were 
pushed onto the stack before each subroutine call, but the number is greater than zero and 
it is the same number of parameters in each of the three cases.  Discuss the advantages 
and disadvantages of each of the three strategies shown below.  

 
 

SUBROUTINE1 
 STMDB SP!,{R0-R3,IP,LR} 
 SUB  SP,SP,#12 
 MOV  IP,SP 
 … 
 … ; do useful work 
 … 
 ADD  SP,SP,#12 
 LDMIA SP!,{R0-R3,IP,PC} 
 
 
SUBROUTINE2 
 STMDB SP!,{R0-R3,IP,LR} 
 MOV  IP,SP 
 SUB  SP,SP,#12 
 … 
 … ; do useful work 
 … 
 ADD  SP,SP,#12 
 LDMIA SP!,{R0-R3,IP,PC} 
 
 
SUBROUTINE3 
 STMDB SP!,{IP,LR} 
 MOV  IP,SP 
 SUB  SP,SP,#12 
 STMDB SP!,{R0-R3} 
 … 
 … ; do useful work 
 … 
 LDMIA SP!,{R0-R3} 
 ADD  SP,SP,#12 
 LDMIA SP!,{IP,PC} 
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In all three cases the stack is loaded up with the same information (perhaps in different 
orders) by the time the “do useful work” point is encountered.  The trick to understanding 
the differences is to plot out the stack frames in all three cases, shown as follows: 

 

In SUBROUTINE1 all offsets in the current stack frame are positive with respect to the 
IP register.  Any stack action (such as local pushes and pops, setting up a stack frame for 
a new subroutine call, etc.) will be at negative offsets relative to IP.  Thus, there is a 
clean and distinct separation between this stack frame and the next stack frame.  The 
distances to the parameters on the stack are very large, however, and those offsets will 
change depending on changes to the numbers of registers saved and to the amount of 
local storage reserved. 

In SUBROUTINE2 all parameters (including the registers) are at positive offsets relative 
to IP, but local variables are at negative offsets.  The distances to the parameters are 
shorter than for SUBROUTINE1, and are still subject to the numbers of registers saved, 
but these offsets are not affected by the amount of local storage reserved (which is below 
IP).  There is not a clean separation between this stack frame and the next stack frame. 

In SUBROUTINE3 there are very short positive distances to the parameters on the stack 
and very short negative distances to the local variables.  Those distances are not affected 
by either the number of registers saved or by the amount of local storage reserved.  
Offsets into the local storage are not affected by the numbers of registers saved.  As with 
SUBROUTINE2 there is not a clean separation between this stack frame and the next 
stack frame, and the code is slightly longer than either of the previous versions. 
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