
CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts 

CMPSCI 201 – Fall 2004 

Midterm #2 Answers 
Professor William T. Verts 

<1> 15 Points – You should be quite familiar by now with the single-precision floating point 
numeric format (one 32-bit word containing the sign bit, 8 bits for the biased exponent, 
and 23 bits of mantissa, with bias=127).  Now we need to consider the double-precision 
format (two 32-bit words stored in little-endian order, containing the sign bit, 11 bits for 
the biased exponent, and 52 bits of mantissa, with bias=1023).  A positive double 
precision number is located in main memory at addresses N and N+4.  Write the ARM 
code using only integer instructions to generate an approximate square root for the 
number into memory locations S and S+4, similar to the method we developed in class 
for single precision.  In essence, we are converting a floating-point number of the form 
N=+1.xxxx×2Y into S=+1.0000×2Y÷2, as shown below (remember that exponent value Y 
is biased): 

 
 

MOV  R0,#0  Store 0 into first word 
STR  R0,S   of two-word double. 
LDR  R0,N+4  Load word containing exponent. 
MOV  R0,R0,LSR #20 Shift exponent down to low end. 
LDR  R1,=1023  Load bias from constant pool. 
SUB  R0,R0,R1  Subtract bias. 
MOVS  R0,R0,LSR #1 Divide bias by 2. 
ADCMI R0,R0,#0  Correct divide for odd negatives. 
ADD  R0,R0,R1  Add bias. 
MOV  R0,R0,LSL #20 Shift exponent to correct place. 
STR  R0,S+4  Store into second word of double. 

Analysis: This is very similar to the single-precision technique that we developed in class: shift 
the biased exponent 23 bits to the right to clear out mantissa bits and align the biased 
exponent to the low end of the word, subtract the bias, divide the exponent by two, re-add 
the bias, and shift the exponent back into its proper position.   

 The difficulties here are that the mantissa is 52 bits distributed across two words instead 
of 23 bits, and the bias is 1023 instead of 127.  Clearing out the first word of the mantissa 
is trivial.  Since the mantissa is 52 bits in length, clearing one word clears 32 of those 52 
bits, leaving 20 bits in the low end of the second word.  Shifting that second word to the 
right by 20 bits clears those bits and aligns the biased exponent to the low end of the 
word.   
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 Unfortunately, you cannot simply subtract off 1023, since that constant will not fit in the 
space allowed for constants in and instruction (it is wider than eight bits).  Therefore, you 
must either build the constant in a register (MOV R1,#1024, which will fit in an 
instruction, followed by SUB R1,R1,#1) or you must load the constant from memory.  
The instruction form LDR R1,=1023 causes the assembler to reserve a word of 
memory in what is called the constant pool (an area right after the end of the program), 
initialize it to 1023, then assemble a LDR instruction to reference that location.  Either 
way is fine. 

Grading: In general, accept any solution that works, but no solution should contain loops.  
Remove 5 points for any solution, even one that works, which is very long and/or very 
complicated (containing loops or longer than 20 instructions).  Remove 10 points for any 
solution that gets a few things right but is otherwise totally off-the-wall.  The expected 
solution is similar to the solution developed in class (and in the notes).  In any more-or-
less correct solution, remove 2 points for attempting to incorrectly use 1023 as an 
embedded constant.  Remove 1 point for each case where the wrong constant was used.  
It is OK to use ADR pseudoinstructions to get the base address of N or S and then treat 
them as arrays. 

 

<2> 5 Points – In each of the following problems you are to multiply the contents of integer 
register R0 by a constant value, in one instruction, without using any other registers, and 
without using any explicit multiplication instructions such as MUL, MLA, or UMULL.  If 
the task cannot be accomplished in a single instruction, answer “Can’t be Done”. 

 (1) R0 := R0 × 1025  ADD R0,R0,R0,LSL #10 

 (2) R0 := R0 × 1024  MOV R0,R0,LSL #10 

 (3) R0 := R0 × 257   ADD R0,R0,R0,LSL #8 

 (4) R0 := R0 × 256   MOV R0,R0,LSL #8 

 (5) R0 := R0 × 255   RSB R0,R0,R0,LSL #8 

Grading: 1 point each, all or nothing. 
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<3> 10 Points – In the subroutine call below, which of the parameters are call-by-value, call-
by-return, call-by-value-return, and call-by-reference? 

 
LDR R0,X   X is call-by-value 
STR R0,[SP,#-4]! 
ADR R0,Y   Y is call-by-reference 
STR R0,[SP,#-4]! 
LDR R0,Z   Z is call-by value 
STR R0,[SP,#-4]! 
BL  SUBROUTINE 
LDR R0,[SP],#12 
STR R0,Thingy  Thingy is call-by-return 
    (Shares parameter space with Z) 

Analysis: Three items are pushed onto the stack (the value of X, the address of Y, and the value 
of Z), but only one item is popped off (the value to store into Thingy).  At the same 
time that Thingy is loaded off of the stack, its storage and the two following words are 
also discarded at the same time. 

Grading: Remove 3 points for each wrong answer, but do not go below 10 points.  Remove only 
1 point for stating that Thingy is call-by-value-return without mentioning Z. 

 

<4> 10 Points – Examine the following recursive subroutine.  Describe in words what it does 
and how it works.  (What registers are changed, how and when are they changed, what 
happens to the stack, etc.?) 

 
SUB STR LR,[SP,#-4]! 
 SUBS R0,R0,#1 
 BLNE SUB 
 ADD R1,R1,#1 
 LDR PC,[SP],#4 

 The subroutine recursively calls itself, decrementing R0 until it becomes zero.  At this 
point the number of return addresses on the stack equals the original value of R0.  The 
subroutine then starts unwinding the recursion, adding 1 to R1 each time.  The net effect, 
without considering stack operations, is the following code sequence: 

 
 ADD R1,R1,R0 
 MOV R0,#0 

Grading: Give full credit for any reasonable answer that describes the number of addresses 
pushed onto the stack and the final effects in registers R0 and R1.  Remove 3 points if no 
description of stack operations is present.  Remove 2 points for omitting the effects on 
R0.  Remove 2 points for omitting the effects on R1. 
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<5> 10 Points – The following diagram shows a counter chain of six T (toggle) flip-flops.  
Normally, this circuit would take 26=64 clock pulses to count up from zero around to zero 
again.  Add gates to this circuit so that it counts from 0 to 59 and then back to 0 on the 
60TH pulse (forming the seconds or minutes counters in a binary time-of-day clock). 

 

Analysis: The counter adds 1 to the binary value of the register after every complete clock pulse.  
The rightmost flip-flop is the 1’s place, the next flip-flop is the 2’s bit, etc.  The idea here 
is to detect the value 60 and use that value to clear the register.  In binary the value 60 is 
111100 (32+16+8+4).  As the counter counts up, the transition between 59 (111011) and 
60 (111100) guarantees that as the leftmost four bits all become one, the rightmost two 
bits must be zero.  This case is detected with an AND gate, but since the reset lines are 
active on 0 the output of the AND gate must be inverted; hence we use a 4-input NAND.  
Using an explicit AND gate followed by a NOT gate is OK.  Since the rightmost two bits 
are known to be zero, they do not need to be cleared; their reset lines may be left 
unconnected. 

Grading: Accept any solution that works.  Remove 1 point for clearing on 59 instead of 60.  
Remove 1 point for forgetting the NOT on the resets.  Remove 2 points for using 
OR+NOT/NOR instead of AND+NOT/NAND.  Remove 1 point for each case where 
lines are left dangling or are shorted out, or where any line is connected to a “set” input, 
but do not go below 0. 
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<6> 15 Points – In a high-level language such as Pascal, I declare a row-major two-
dimensional array with six rows and five columns of 32-bit integers by writing the 
statement: 

Var A : Array [5..10,3..7] Of Integer ; 

 The upper left element of the array is at A[5,3] and the lower right element of the array 
is at A[10,7].  In translating this array declaration into ARM assembly language, I use 
the directive A  %  120 to  allocate and initialize to zero all bytes of the array (6 rows 
× 5 columns = 30 elements; 30 elements × 4 bytes per element = 120 bytes of memory). 

(1) (5 points) In pure algebra, write a mathematical expression that shows the 
mapping function from array indices X and Y to the byte offset in memory of the 
required item, relative to the base address of the array, and using row-major form.  
Your answer should be a polynomial on X and Y of the form: Offset  f(X,Y).  
Tell me what f is. 

 Offset = [(X – 5) × 5 + (Y – 3)] × 4 
   = [5X – 25 + Y – 3] × 4 
   = [5X + Y – 28] × 4 
   = 20X + 4Y - 112 

 Grading: Accept any equivalent equation.  Remove 2 
points for an equation equivalent to [5X+Y–28] but 
forgetting to multiply by 4 to get the byte offset.  Remove 2 points for 
implementing a column-major solution instead of a row-major solution. 

(2) (5 points) Write the correct ARM assembly language statements to load into 
register R0 the contents of A[X,Y] where X and Y are integer variables stored in 
memory.  You do not need to perform range checking on X or Y. 
 
LDR R1,X    LDR R1,X  
MOV R2,#20   LDR R2,Y 
MUL R1,R2,R1   ADD R1,R1,R1,LSL #2 
LDR R2,Y    ADD R1,R1,R2 
ADD R1,R1,R2,LSL #2 SUB R1,R1,#28 
SUB R1,R1,#112  ADR R5,A 
ADR R5,A    LDR R0,[R5,R1,LSL #2] 
LDR R0,[R5,R1]   

 Grading: Accept any working solution.  Remove 1 point for using multiplying by 
a constant inside a MUL instruction.  Remove 1 point for each occurrence of 
omitting an important section (such as the ADR pseudoinstruction, the LSL #2 in 
the right-hand solution, etc.), but do not go below zero. 
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 (3) (5 points) Write the correct ARM assembly language statements to load into 
register R0 the contents of A[7,5].  By using constant subscripts (the 7 and the 
5) you are free to optimize your code in any manner you see fit. 

 Offset = [(X – 5) × 5 + (Y – 3)] × 4, where X=7 and Y=5 
   = [(7 – 5) × 5 + (5 – 3)] × 4 
   = [2 × 5 + 2] × 4 
   = [12] × 4 
   = 48 
 
  ADR R5,A 
  LDR R0,[R5,#48] 
 
  ADR R5,A+48 
  LDR R0,[R5] 

 Grading: Accept any working solution.  Remove 1 point for a column-major 
solution instead of a row-major solution.  Remove 1 point for any solution longer 
than 5 or 6 lines of code. 
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<7> 15 Points – Examine the memory grid below.  With N=3, M=7, and B=12, then… 

 

1. …how many address lines are there? (2 points) 
   N+M = 3+7 = 10 

2. …how many word lines are there? (2 points) 
   2N = 23 = 8 

3. …how many bit lines are there? (2 points) 
   2M × B = 27 × 12 = 128 × 12 = 1536 

4. …how many memory bits are there? (2 points) 
   8 word lines × 1536 bit lines = 12288 total bits 

5. …how many AND-gates are there in the entire circuit? (2 points) 
   2N + 2M × B = 23 + 27 × 12 = 8 + 128 × 12 = 8 + 1536 = 1544 

6. …is this the most efficient arrangement in terms of overall hardware?  I.e., is 
there a better choice for N and M which results in the same amount of memory 
but uses fewer gates?  If so, what are the best values for N and M? (5 points) 

   No, this is not the best arrangement.  The “Sweet Spot” is N=7 and M=3. 

 N M ANDs = 2N + 2M × B      
  3 7 23 + 27 × 12 = 8 + 128 × 12 = 8 + 1536 = 1544. -4 points 
  4 6 24 + 26 × 12 = 16 + 64 × 12 = 16 + 768 = 784. -3 points 
  5 5 25 + 25 × 12 = 32 + 32 × 12 = 32 + 384 = 416. -2 points 
  6 4 26 + 24 × 12 = 64 + 16 × 12 = 64 + 192 = 256. -1 point 
  7 3 27 + 23 × 12 = 128 + 8 × 12 = 128 + 96 = 224.   Correct 
  8 2 28 + 22 × 12 = 256 + 4 × 12 = 256 + 48 = 304. -1 point 
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<8> 20 Points – One extension to the graphics lab assignment is to create a procedure to draw 
a horizontal line across one raster of the screen.  To do this you need three parameters: 
the desired raster (Y) and the two endpoints of the line (X1 and X2).  Assuming that X1 is 
less than or equal to X2 and that X1, X2, and Y all contain legal values and are “visible” 
on screen, one approach to drawing a horizontal line is the following: 

For X := X1 To X2 Do Set_Pixel(X,Y) ; 

 This approach, however, is very inefficient, since in our model pixels are stored 32 per 
memory word (one bit per pixel).  What we would like to do instead is to write a 
procedure that makes as few memory accesses as possible, and uses masking techniques 
(AND, OR, NOT) to fill in large blocks of pixels simultaneously.  Once the offset into 
memory of the beginning of Y’s raster line is known (assume that the value is in ARM 
register R5), there are three cases to consider, as follows. 

 1. X1 and X2 are inside the same memory word: 

 

 2. X1 and X2 are in adjacent memory words: 

 

 3. X1 and X2 are in widely separated memory words: 

 

 

 Write a code fragment to set to 1 all bits/pixels between X1 and X2 using at most one 
LDR and at most one STR to each word of memory.  Do not change any other pixels. 

 Assume that X1 is in register R1 and X2 is in register R2, that the pointer to the address 
of Y’s raster line in memory is in R5, and that all values are legal (i.e., no clipping is 
required).  All other registers are free for use by your code.  This is not a subroutine, so 
no register transparency is necessary.  Write your code to be as compact and efficient as 
possible.   

 Type your name and your answer into Notepad, print it out using 12 point Courier New, 
and then staple your answer to the back of this exam section.  Please no handwritten 
answers! 
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 AND R3,R1,#31   R3 := R1 Mod 32  (Bit offset X1) 
 MVN R0,#0   R0 := all 1 bits 
 MOV R3,R0,LSR R3  R3 := Left Mask  (000…0111111…111)  
 AND R4,R2,#31   R4 := R2 Mod 32  (Bit offset X2) 
 EOR R4,R4,#31   R4 := 31 – R4 
 MVN R0,#0   R0 := all 1 bits 
 MOV R4,R0,LSL R4  R4 := Right Mask (111…111100…0000)  
 MOV R1,R1,LSR #5  R1 := R1 Div 32 (Word of X1) 
 MOV R2,R2,LSR #5  R2 := R2 Div 32 (Word of X2)   
 CMP R1,R2   See if X1 is in same word as X2 
 BNE Many            
 AND R3,R3,R4   Are in same word; combine masks 
 B Done            
Many LDR R0,[R5,R2,LSL #2] Fill right end of line 
 ORR R0,R0,R4 
 STR R0,[R5,R2,LSL #2]         
 MVN R0,#0   R0 := all 1 bits 
Loop SUB R2,R2,#1   Fill middle words from Word(X2)-1 
 CMP R1,R2      down to Word(X1)+1 
 BEQ Done 
 STR R0,[R5,R2,LSL #2] 
 B Loop            
Done LDR R0,[R5,R1,LSL #2] Fill left end of line (or entire 
 ORR R0,R0,R3   line if X1 in same word as X2) 
 STR R0,[R5,R1,LSL #2] 

Analysis: The hardest task is to generate the masks for the left end of the line and for the right 
end of the line.  If it is then determined that the left end and the right end both fall in the 
same word of memory the two masks are ANDed together to form a composite mask.  
This mask is ORed into the proper word of memory.  Otherwise, the left mask is ORed 
into the left word of the line, the right mask is ORed into the right word of the line, and 
all words in between are filled with 1 bits.  The simplest way to fill a register with 1 bits 
is MVN R0,#0 which moves the 1’s complement of the constant into the register.  This 
can also be done by using MOV R0,#-1, which the assembler will convert automatically 
into the equivalent MVN instruction. 

 Finding the correct word in the raster is X Div 32, performed by shifting the register to 
the right by 5 bits.  Once the word offset is known, this offset must be multiplied by 4 
(LSL #2) to get the actual byte address.  Finding the correct pixel offset within the word 
is X Mod 32, performed by ANDing the register with 31 (0000…000011111).   

Grading: Accept any working solution.  Solutions shorter than the one here may work, but they 
may not handle all cases properly.  Remove 5 points for not handling the case where the 
endpoints are in the same word.  Remove 2 points for each improperly constructed mask.  
Remove 5 points for hard-coding a three-word raster line instead of a general purpose 
routine.  Remove 2 points for each minor syntax or semantic error. 
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