
CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

CMPSCI 201 – Fall 2004

Midterm #2 Answers
Professor William T. Verts

<1> 15 Points – You should be quite familiar by now with the single-precision floating point
numeric format (one 32-bit word containing the sign bit, 8 bits for the biased exponent,
and 23 bits of mantissa, with bias=127). Now we need to consider the double-precision
format (two 32-bit words stored in little-endian order, containing the sign bit, 11 bits for
the biased exponent, and 52 bits of mantissa, with bias=1023). A positive double
precision number is located in main memory at addresses N and N+4. Write the ARM
code using only integer instructions to generate an approximate square root for the
number into memory locations S and S+4, similar to the method we developed in class
for single precision. In essence, we are converting a floating-point number of the form
N=+1.xxxx×2Y into S=+1.0000×2Y÷2, as shown below (remember that exponent value Y
is biased):

MOV R0,#0 Store 0 into first word
STR R0,S of two-word double.
LDR R0,N+4 Load word containing exponent.
MOV R0,R0,LSR #20 Shift exponent down to low end.
LDR R1,=1023 Load bias from constant pool.
SUB R0,R0,R1 Subtract bias.
MOVS R0,R0,LSR #1 Divide bias by 2.
ADCMI R0,R0,#0 Correct divide for odd negatives.
ADD R0,R0,R1 Add bias.
MOV R0,R0,LSL #20 Shift exponent to correct place.
STR R0,S+4 Store into second word of double.

Analysis: This is very similar to the single-precision technique that we developed in class: shift
the biased exponent 23 bits to the right to clear out mantissa bits and align the biased
exponent to the low end of the word, subtract the bias, divide the exponent by two, re-add
the bias, and shift the exponent back into its proper position.

 The difficulties here are that the mantissa is 52 bits distributed across two words instead
of 23 bits, and the bias is 1023 instead of 127. Clearing out the first word of the mantissa
is trivial. Since the mantissa is 52 bits in length, clearing one word clears 32 of those 52
bits, leaving 20 bits in the low end of the second word. Shifting that second word to the
right by 20 bits clears those bits and aligns the biased exponent to the low end of the
word.

– Page 1 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

 Unfortunately, you cannot simply subtract off 1023, since that constant will not fit in the
space allowed for constants in and instruction (it is wider than eight bits). Therefore, you
must either build the constant in a register (MOV R1,#1024, which will fit in an
instruction, followed by SUB R1,R1,#1) or you must load the constant from memory.
The instruction form LDR R1,=1023 causes the assembler to reserve a word of
memory in what is called the constant pool (an area right after the end of the program),
initialize it to 1023, then assemble a LDR instruction to reference that location. Either
way is fine.

Grading: In general, accept any solution that works, but no solution should contain loops.
Remove 5 points for any solution, even one that works, which is very long and/or very
complicated (containing loops or longer than 20 instructions). Remove 10 points for any
solution that gets a few things right but is otherwise totally off-the-wall. The expected
solution is similar to the solution developed in class (and in the notes). In any more-or-
less correct solution, remove 2 points for attempting to incorrectly use 1023 as an
embedded constant. Remove 1 point for each case where the wrong constant was used.
It is OK to use ADR pseudoinstructions to get the base address of N or S and then treat
them as arrays.

<2> 5 Points – In each of the following problems you are to multiply the contents of integer
register R0 by a constant value, in one instruction, without using any other registers, and
without using any explicit multiplication instructions such as MUL, MLA, or UMULL. If
the task cannot be accomplished in a single instruction, answer “Can’t be Done”.

 (1) R0 := R0 × 1025 ADD R0,R0,R0,LSL #10

 (2) R0 := R0 × 1024 MOV R0,R0,LSL #10

 (3) R0 := R0 × 257 ADD R0,R0,R0,LSL #8

 (4) R0 := R0 × 256 MOV R0,R0,LSL #8

 (5) R0 := R0 × 255 RSB R0,R0,R0,LSL #8

Grading: 1 point each, all or nothing.

– Page 2 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

<3> 10 Points – In the subroutine call below, which of the parameters are call-by-value, call-
by-return, call-by-value-return, and call-by-reference?

LDR R0,X X is call-by-value
STR R0,[SP,#-4]!
ADR R0,Y Y is call-by-reference
STR R0,[SP,#-4]!
LDR R0,Z Z is call-by value
STR R0,[SP,#-4]!
BL SUBROUTINE
LDR R0,[SP],#12
STR R0,Thingy Thingy is call-by-return
 (Shares parameter space with Z)

Analysis: Three items are pushed onto the stack (the value of X, the address of Y, and the value
of Z), but only one item is popped off (the value to store into Thingy). At the same
time that Thingy is loaded off of the stack, its storage and the two following words are
also discarded at the same time.

Grading: Remove 3 points for each wrong answer, but do not go below 10 points. Remove only
1 point for stating that Thingy is call-by-value-return without mentioning Z.

<4> 10 Points – Examine the following recursive subroutine. Describe in words what it does
and how it works. (What registers are changed, how and when are they changed, what
happens to the stack, etc.?)

SUB STR LR,[SP,#-4]!
 SUBS R0,R0,#1
 BLNE SUB
 ADD R1,R1,#1
 LDR PC,[SP],#4

 The subroutine recursively calls itself, decrementing R0 until it becomes zero. At this
point the number of return addresses on the stack equals the original value of R0. The
subroutine then starts unwinding the recursion, adding 1 to R1 each time. The net effect,
without considering stack operations, is the following code sequence:

 ADD R1,R1,R0
 MOV R0,#0

Grading: Give full credit for any reasonable answer that describes the number of addresses
pushed onto the stack and the final effects in registers R0 and R1. Remove 3 points if no
description of stack operations is present. Remove 2 points for omitting the effects on
R0. Remove 2 points for omitting the effects on R1.

– Page 3 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

<5> 10 Points – The following diagram shows a counter chain of six T (toggle) flip-flops.
Normally, this circuit would take 26=64 clock pulses to count up from zero around to zero
again. Add gates to this circuit so that it counts from 0 to 59 and then back to 0 on the
60TH pulse (forming the seconds or minutes counters in a binary time-of-day clock).

Analysis: The counter adds 1 to the binary value of the register after every complete clock pulse.
The rightmost flip-flop is the 1’s place, the next flip-flop is the 2’s bit, etc. The idea here
is to detect the value 60 and use that value to clear the register. In binary the value 60 is
111100 (32+16+8+4). As the counter counts up, the transition between 59 (111011) and
60 (111100) guarantees that as the leftmost four bits all become one, the rightmost two
bits must be zero. This case is detected with an AND gate, but since the reset lines are
active on 0 the output of the AND gate must be inverted; hence we use a 4-input NAND.
Using an explicit AND gate followed by a NOT gate is OK. Since the rightmost two bits
are known to be zero, they do not need to be cleared; their reset lines may be left
unconnected.

Grading: Accept any solution that works. Remove 1 point for clearing on 59 instead of 60.
Remove 1 point for forgetting the NOT on the resets. Remove 2 points for using
OR+NOT/NOR instead of AND+NOT/NAND. Remove 1 point for each case where
lines are left dangling or are shorted out, or where any line is connected to a “set” input,
but do not go below 0.

– Page 4 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

<6> 15 Points – In a high-level language such as Pascal, I declare a row-major two-
dimensional array with six rows and five columns of 32-bit integers by writing the
statement:

Var A : Array [5..10,3..7] Of Integer ;

 The upper left element of the array is at A[5,3] and the lower right element of the array
is at A[10,7]. In translating this array declaration into ARM assembly language, I use
the directive A % 120 to allocate and initialize to zero all bytes of the array (6 rows
× 5 columns = 30 elements; 30 elements × 4 bytes per element = 120 bytes of memory).

(1) (5 points) In pure algebra, write a mathematical expression that shows the
mapping function from array indices X and Y to the byte offset in memory of the
required item, relative to the base address of the array, and using row-major form.
Your answer should be a polynomial on X and Y of the form: Offset f(X,Y).
Tell me what f is.

 Offset = [(X – 5) × 5 + (Y – 3)] × 4
 = [5X – 25 + Y – 3] × 4
 = [5X + Y – 28] × 4
 = 20X + 4Y - 112

 Grading: Accept any equivalent equation. Remove 2
points for an equation equivalent to [5X+Y–28] but
forgetting to multiply by 4 to get the byte offset. Remove 2 points for
implementing a column-major solution instead of a row-major solution.

(2) (5 points) Write the correct ARM assembly language statements to load into
register R0 the contents of A[X,Y] where X and Y are integer variables stored in
memory. You do not need to perform range checking on X or Y.

LDR R1,X LDR R1,X
MOV R2,#20 LDR R2,Y
MUL R1,R2,R1 ADD R1,R1,R1,LSL #2
LDR R2,Y ADD R1,R1,R2
ADD R1,R1,R2,LSL #2 SUB R1,R1,#28
SUB R1,R1,#112 ADR R5,A
ADR R5,A LDR R0,[R5,R1,LSL #2]
LDR R0,[R5,R1]

 Grading: Accept any working solution. Remove 1 point for using multiplying by
a constant inside a MUL instruction. Remove 1 point for each occurrence of
omitting an important section (such as the ADR pseudoinstruction, the LSL #2 in
the right-hand solution, etc.), but do not go below zero.

– Page 5 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

 (3) (5 points) Write the correct ARM assembly language statements to load into
register R0 the contents of A[7,5]. By using constant subscripts (the 7 and the
5) you are free to optimize your code in any manner you see fit.

 Offset = [(X – 5) × 5 + (Y – 3)] × 4, where X=7 and Y=5
 = [(7 – 5) × 5 + (5 – 3)] × 4
 = [2 × 5 + 2] × 4
 = [12] × 4
 = 48

 ADR R5,A
 LDR R0,[R5,#48]

 ADR R5,A+48
 LDR R0,[R5]

 Grading: Accept any working solution. Remove 1 point for a column-major
solution instead of a row-major solution. Remove 1 point for any solution longer
than 5 or 6 lines of code.

– Page 6 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

<7> 15 Points – Examine the memory grid below. With N=3, M=7, and B=12, then…

1. …how many address lines are there? (2 points)
 N+M = 3+7 = 10

2. …how many word lines are there? (2 points)
 2N = 23 = 8

3. …how many bit lines are there? (2 points)
 2M × B = 27 × 12 = 128 × 12 = 1536

4. …how many memory bits are there? (2 points)
 8 word lines × 1536 bit lines = 12288 total bits

5. …how many AND-gates are there in the entire circuit? (2 points)
 2N + 2M × B = 23 + 27 × 12 = 8 + 128 × 12 = 8 + 1536 = 1544

6. …is this the most efficient arrangement in terms of overall hardware? I.e., is
there a better choice for N and M which results in the same amount of memory
but uses fewer gates? If so, what are the best values for N and M? (5 points)

 No, this is not the best arrangement. The “Sweet Spot” is N=7 and M=3.

 N M ANDs = 2N + 2M × B
 3 7 23 + 27 × 12 = 8 + 128 × 12 = 8 + 1536 = 1544. -4 points
 4 6 24 + 26 × 12 = 16 + 64 × 12 = 16 + 768 = 784. -3 points
 5 5 25 + 25 × 12 = 32 + 32 × 12 = 32 + 384 = 416. -2 points
 6 4 26 + 24 × 12 = 64 + 16 × 12 = 64 + 192 = 256. -1 point
 7 3 27 + 23 × 12 = 128 + 8 × 12 = 128 + 96 = 224. Correct
 8 2 28 + 22 × 12 = 256 + 4 × 12 = 256 + 48 = 304. -1 point

– Page 7 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

<8> 20 Points – One extension to the graphics lab assignment is to create a procedure to draw
a horizontal line across one raster of the screen. To do this you need three parameters:
the desired raster (Y) and the two endpoints of the line (X1 and X2). Assuming that X1 is
less than or equal to X2 and that X1, X2, and Y all contain legal values and are “visible”
on screen, one approach to drawing a horizontal line is the following:

For X := X1 To X2 Do Set_Pixel(X,Y) ;

 This approach, however, is very inefficient, since in our model pixels are stored 32 per
memory word (one bit per pixel). What we would like to do instead is to write a
procedure that makes as few memory accesses as possible, and uses masking techniques
(AND, OR, NOT) to fill in large blocks of pixels simultaneously. Once the offset into
memory of the beginning of Y’s raster line is known (assume that the value is in ARM
register R5), there are three cases to consider, as follows.

 1. X1 and X2 are inside the same memory word:

 2. X1 and X2 are in adjacent memory words:

 3. X1 and X2 are in widely separated memory words:

 Write a code fragment to set to 1 all bits/pixels between X1 and X2 using at most one
LDR and at most one STR to each word of memory. Do not change any other pixels.

 Assume that X1 is in register R1 and X2 is in register R2, that the pointer to the address
of Y’s raster line in memory is in R5, and that all values are legal (i.e., no clipping is
required). All other registers are free for use by your code. This is not a subroutine, so
no register transparency is necessary. Write your code to be as compact and efficient as
possible.

 Type your name and your answer into Notepad, print it out using 12 point Courier New,
and then staple your answer to the back of this exam section. Please no handwritten
answers!

– Page 8 –

CMPSCI 201 – Fall 2004 – Midterm #2 – Professor William T. Verts

– Page 9 –

 AND R3,R1,#31 R3 := R1 Mod 32 (Bit offset X1)
 MVN R0,#0 R0 := all 1 bits
 MOV R3,R0,LSR R3 R3 := Left Mask (000…0111111…111)
 AND R4,R2,#31 R4 := R2 Mod 32 (Bit offset X2)
 EOR R4,R4,#31 R4 := 31 – R4
 MVN R0,#0 R0 := all 1 bits
 MOV R4,R0,LSL R4 R4 := Right Mask (111…111100…0000)
 MOV R1,R1,LSR #5 R1 := R1 Div 32 (Word of X1)
 MOV R2,R2,LSR #5 R2 := R2 Div 32 (Word of X2)
 CMP R1,R2 See if X1 is in same word as X2
 BNE Many
 AND R3,R3,R4 Are in same word; combine masks
 B Done
Many LDR R0,[R5,R2,LSL #2] Fill right end of line
 ORR R0,R0,R4
 STR R0,[R5,R2,LSL #2]
 MVN R0,#0 R0 := all 1 bits
Loop SUB R2,R2,#1 Fill middle words from Word(X2)-1
 CMP R1,R2 down to Word(X1)+1
 BEQ Done
 STR R0,[R5,R2,LSL #2]
 B Loop
Done LDR R0,[R5,R1,LSL #2] Fill left end of line (or entire
 ORR R0,R0,R3 line if X1 in same word as X2)
 STR R0,[R5,R1,LSL #2]

Analysis: The hardest task is to generate the masks for the left end of the line and for the right
end of the line. If it is then determined that the left end and the right end both fall in the
same word of memory the two masks are ANDed together to form a composite mask.
This mask is ORed into the proper word of memory. Otherwise, the left mask is ORed
into the left word of the line, the right mask is ORed into the right word of the line, and
all words in between are filled with 1 bits. The simplest way to fill a register with 1 bits
is MVN R0,#0 which moves the 1’s complement of the constant into the register. This
can also be done by using MOV R0,#-1, which the assembler will convert automatically
into the equivalent MVN instruction.

 Finding the correct word in the raster is X Div 32, performed by shifting the register to
the right by 5 bits. Once the word offset is known, this offset must be multiplied by 4
(LSL #2) to get the actual byte address. Finding the correct pixel offset within the word
is X Mod 32, performed by ANDing the register with 31 (0000…000011111).

Grading: Accept any working solution. Solutions shorter than the one here may work, but they
may not handle all cases properly. Remove 5 points for not handling the case where the
endpoints are in the same word. Remove 2 points for each improperly constructed mask.
Remove 5 points for hard-coding a three-word raster line instead of a general purpose
routine. Remove 2 points for each minor syntax or semantic error.

	CMPSCI 201 – Fall 2004
	Midterm #2 Answers
	Professor William T. Verts

