
CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<1> 5 Points – There is a value in register R0 which needs to have some bits set to 1, some
bits set to 0, some bits complemented, and the rest left unchanged. The desired pattern is
shown below, where “X” indicates a bit to be left unchanged and “-” indicates a bit to be
complemented. Write the appropriate ARM assembly code to perform this task, using no
more than three individual instructions. Extra credit: +2 points if you solve this problem
in exactly two assembly language statements. Every instruction must be of the form
OPCODE R0,R0,#___,___ where constants are numbers in the range [0…255] right-
rotated by even numbers between 0 and 30.

 Discussion:

 The general solution is as follows:
 ORR R0 with: 00000000000011110000000000000000
 AND R0 with: 11111111111111110000111111111111
 EOR R0 with: 00000000000000000000111100000000

 As it turns out, there isn’t a three-instruction solution, sorry, but there is a two-instruction
solution. The problem here is that the given AND-mask can’t be created in one ARM
instruction (but it can be created in two instructions at the expense of another register).
We need an AND-NOT instruction! Here is an acceptable four-instruction solution:

 ORR R0,R0,#15,16 1111 right-rotated 16 bits
 MVN R1,#15,20 0000 right-rotated 20 bits
 AND R0,R0,R1 with 1’s everywhere else
 EOR R0,R0,#15,24 1111 right-rotated 24 bits

 The three sequences (ORR, MVN+AND, EOR) can be executed in any order and the
result will be the same.

 To reduce this to two instructions, you first execute an ORR of a mask suitable for both
the ORR and the AND instructions, setting to 1 all the bits for the AND as well as for the
ORR. Next, you EOR (exclusive-OR) with a mask suitable for both the AND and the EOR
instructions to invert to 0 the bits set to 1 by the ORR as well as those that should be
complemented in the first place. Here is the solution (which must be in this order):

 ORR R0,R0,#255,20 11111111 right-rotated 20 bits
 EOR R0,R0,#255,24 11111111 right-rotated 24 bits

 This sequence is equivalent to the following mask patterns:
 OR R0 with: 00000000000011111111000000000000
 EOR R0 with: 00000000000000001111111100000000

 Grading: Accept for full credit any solution, of any length, that accomplishes the task.
Accept for +2 extra credit the two-instruction solution above (or anything equivalent).
Remove 1 point for each coding error, but do not go below zero.

– Page 1 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<2> 5 Points – A word-size memory location contains the hexadecimal value 0x408C0000,
interpreted as single precision floating point. What is the equivalent binary fraction,
expressed as ±1.xxxxx×2±Y? What is its decimal (base 10) value?

 Binary fraction:

 The binary representation of the given value is 010000001000110000000…0000, so the
sign is 0, the biased exponent is 10000001, and the mantissa is 00011 (omitting trailing
zeroes). In decimal the biased exponent is 129; subtracting the bias of 127 reveals that
the true binary exponent is +2. The mantissa is missing the leading 1 to the left of the
decimal point, so 1.00011 is its true value. Thus, the binary fraction is 1.00011×22.

 Decimal value:

 The value 1.00011×22 means 100.011, or 4+¼+⅛ = 4+0.25+0.125 = 4.375 = 4⅜.

 Grading: Assign 3 points to the binary fraction and 2 points to the decimal value.
Subtract 1 point for getting the sign wrong, 1 point for getting the exponent wrong, and 1
point for getting the mantissa wrong. Subtract 2 points for getting the decimal value
wrong, but do not penalize students for correctly converting to decimal an incorrect
binary fraction.

<3> 5 Points – If you interpret the same word as in question 2 as a signed integer, what is its
correct decimal (base 10) value?

 From 408C0000, we get: 4×167 + 0×166 + 8×165 + C×164

 From the equivalent binary, we get: 230 + 223 + 219 + 218

 This computes to 1,073,741,824 + 8,388,608 + 524,288 + 262,144 = 1,082,916,864

Grading: This was difficult to get correct without a calculator. Remove 1 point for using
either power-form without computing the final number. Otherwise, remove 1 point for
each visible computational error that leads to an incorrect final result, but do not go
below zero. Remove all credit if there is a wrong final answer with no supporting work.

<4> 5 Points – Short Answer – Describe the function of the following recursive subroutine.
What registers are modified? How are they changed? What is the maximum possible
depth of the stack (in words) at the point where the basis case is detected?

 SUB STR LR,[SP,#-4]!
 STR R0,[SP,#-4]!
 MOVS R0,R0,LSR #1
 ADDCS R1,R1,#1
 BLNE SUB
 LDR R0,[SP],#4
 LDR PC,[SP],#4

– Page 2 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

 This subroutine counts into R1 the number of 1-bits in R0. The subroutine works by
right-shifting R0 into the carry bit, which is an indication whether or not R1 should be
incremented (the ADDCS instruction means “ADD if Carry is Set”). Recursion happens
with the successively smaller shifted R0 value until it becomes zero. Unwinding the
recursive calls successively restores each earlier version of R0, back to its original value
at the time of the initial call.

 The maximum stack depth is proportional to the position of the left-most 1-bit in R0. If
the left-most 1-bit is initially at the left end of the word (where the sign bit would be),
then the stack will be 32 calls deep. Each call pushes two words (the return address and
the saved R0 value), so the maximum stack depth is 64 words (256 bytes).

 Grading: The minimum acceptable answer is “counts into R1 the number of 1-bits in R0”
and “maximum depth 64 words”. Accept for 3 points any reasonable written description
of the process. Remove 1 point for minor errors, 2 points for major errors. Accept for 2
points the correct stack depth (remove 1 point for off-by-one or off-by-two errors such as
62, 63, 65, or 66 words, and remove 1 point for answering in bytes instead of in words).

<5> 10 Points – Show, in binary, the values of R0 and R1 after each of the instructions in the
code fragment below (show only the rightmost six bits of each register, and write “???” in
any slot where the value is unknown).

 Code R0 R1

 MOV R0,#11 001011 ???

 MOV R1,#13 001011 001101

 EOR R0,R0,R1 000110 001101

 EOR R1,R0,R1 000110 001011

 EOR R0,R0,R1 001101 001011

 Grading: 1 point for each answer.

<6> 5 Points – Describe in words what happens to the values in R0 and R1 in the previous
question as a result of the three EOR instructions.

 Swaps the values in R0 and R1.

 Grading: Accept for full credit any answer that indicates that the values in R0 and R1 are
exchanged from their original values. Remove 2 points for minor errors (perhaps caused
by errors in generating the values in problem #5), no credit for wildly wrong answers.

– Page 3 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<7> 10 Points – The subroutine below sorts the numbers in R0 and R1 in ascending order
(using pass-by-value-return). Rewrite the subroutine to be more efficient with respect to
register usage and number of instructions, without changing any of the semantics of the
subroutine. Don’t change the parameter passing mechanism, keep the routine fully
transparent, don’t add any features, and don’t remove any functionality.

 Sort STR LR,[SP,#-4]!
 STR R2,[SP,#-4]!
 STR R3,[SP,#-4]!
 STR R4,[SP,#-4]!
 CMP R0,R1
 BLE Done
 MOV R2,R1
 MOV R1,R0
 MOV R0,R2
 Done LDR R4,[SP],#4
 LDR R3,[SP],#4
 LDR R2,[SP],#4
 LDR LR,[SP],#4
 MOV PC,LR

 The first thing to notice is that the R3 and R4 registers are never used, so their push-pops
can be eliminated. Similarly, since the routine never calls another subroutine the LR
register is never modified, and so its corresponding push-pop can be eliminated as well.
A minimal overhaul is thus:

 Sort STR R2,[SP,#-4]!
 CMP R0,R1
 BLE Done
 MOV R2,R1
 MOV R1,R0
 MOV R0,R2
 Done LDR R2,[SP],#4
 MOV PC,LR

 Next, the inner section corresponding to an IF-statement can be tightened by exploiting
conditional execution:

 Sort STR R2,[SP,#-4]!
 CMP R0,R1
 MOVGT R2,R1
 MOVGT R1,R0
 MOVGT R0,R2
 LDR R2,[SP],#4
 MOV PC,LR

– Page 4 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

 Finally, problems 5 and 6 demonstrated a method of exchanging two values by using
exclusive-OR instructions. Doing so eliminates the need for the temporary register R2,
and thus its push-pop can be eliminated. The tightest answer I can think of is thus:

 Sort CMP R0,R1
 EORGT R0,R0,R1
 EORGT R1,R0,R1
 EORGT R0,R0,R1
 MOV PC,LR

 Grading: Give full credit for either of the first two answers. Remove 2 points each for
forgetting to remove the push-pop for R3, for R4, and for LR. Remove 1 point for each
syntax error or for each case where an illegal change was made (such as removing the
push-pop for R2 without eliminating the need for R2, for example). I don’t expect the
third approach to be a frequent answer, but it is sufficiently sophisticated that if anyone
turns it in it should be worth +3 points extra credit.

<8> 8 Points – Register R0 contains the value 0xFFFFFFFF. Show the contents of the stack,
as well as any change in the position of the stack pointer, after each of the following
instructions is executed (all four problems are independent from one another):

 Grading: 2 points each. Remove 1 point each for minor errors.

 (1) STR R0,[SP,#-8] (2) STR R0,[SP,#-8]!

 The value 0xFFFFFFFF gets put into The value 0xFFFFFFFF gets put into slot
 slot 0x008008, but SP doesn’t change. 0x008008 and SP changes to 0x008008.

 (3) ADD SP,SP,#4 (4) LDR R0,[SP],#4

 SP is increased to point at Register R0 gets the value 0x001A2203
 0x008014, but nothing else changes. and SP is changed to 0x008014.

– Page 5 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<9> 10 Points – In a hypothetical ARM system, an input device is memory-mapped onto a 8-
bit memory location which has the symbolic label InPort defined as pointing to that
address (i.e., the instruction LDRB Rx,InPort loads the selected register from the
input device). A push-button is connected to the rightmost bit of that device, and is wired
so that the input bit sees a value of 0 when the push-button is not pressed and sees a value
of 1 when the push-button is pressed. The other 7 bits are connected to input devices we
are not currently interested in, but which are still active and have values that will be read
in at the same time. Write a subroutine called Wait_Button that polls the input device
until the push-button is pressed. There are no parameters to this routine. As usual, your
routine must be completely transparent to all modified registers.

Wait_Button STR R0,[SP,#-4]!

Loop LDRB R0,InPort
 ANDS R0,R0,#1
 BEQ Loop

 LDR R0,[SP],#4
 MOV PC,LR

 The LDRB instruction means “load byte”, so LDRB R0,InPort loads the low order
byte of R0 from the input port, but as a side effect of this instruction the upper three bytes
of R0 are set to zero. The trick here is to mask off just the input bit and test the whole
word against zero, then repeat until someone pushes the button. We need to have the
input value in a register, so that register must be saved and restored. This is a terrible
waste of computational resources, since the entire attention of the processor is focused on
the central three instructions. No other processing can happen until a button press allows
the processor out of this subroutine.

 Grading: Accept any reasonable coded answer. Remove 1 point per syntax error, “bug”
in the code, or for forgetting the code to keep the routine transparent, but do not go below
zero.

– Page 6 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<10> 5 Points – A byte-addressed computer system with 24-bit addresses (assume that the
entire 16-megabyte address space is filled with real memory) has a direct-mapped cache
as shown below:

1. How many bytes are in each cache block?

 26 = 64. There are 6 bits to specify the offset within the cache block, so that tells
you the size of each block.

2. How many cache blocks are present?

 29 = 512. There are 9 bits to specify the cache block.

3. How many blocks of memory map onto each block in the cache?

 29 = 512. There are 24 total address bits, but the 15 low-order bits are already
used to indicate a cache block number and an offset within a block. With 9 bits
left over, there are 29 blocks that map onto each location in the cache.

4. If only a single program is allowed to run at any one time, how big can that
program be before it cannot fit into the cache in its entirety?

 215 = 32768. For any larger program there will be two bytes from different blocks
that map onto the same byte of the cache.

5. What is the minimum distance between two bytes in the address space that will
guarantee a cache collision?

 215+1 = 32769. See part 4.

 Grading: 1 point each. All or nothing.

– Page 7 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<11> 5 Points – Short Answer – In caching, what are the advantages and disadvantages of the
write-through strategy versus the write-back strategy?

 In write-through every write to the cache is also written back to primary memory. This
always keeps the cache consistent with primary memory, but it slows the system down.
In write-back writes go only to the cache until a cache block is replaced; at that time the
cache block is written back to primary memory. This tends to improve overall system
performance, but the cache and primary memory are out of synchronization with each
other (some other memory-mapped I/O device referencing primary memory may get stale
data).

 Grading: Accept any reasonable answer. Look for discussion of consistency versus
system performance. Remove 2 points for an answer that misses something obvious.

<12> 5 Points –Trace the circuit to the right and show the result
of every gate or block for the case where Operand A = 10
and Operand B = 11. What is the overall function of the
circuit? What is the purpose of the four AND gates?

 The circuit multiplies two 2-bit numbers to create a 4-bit
product. The AND-gates generate all possible binary
partial-products, which are then added together to form the
true product. For A=10 and B=11, the Output=0110 (or
in decimal, 2×3=6).

 Grading: Assign 3 points for the correct answer and outputs
from all gates (remove 1 point if the outputs of the AND-
gates are not labeled). Assign 1 point for the explanation o
point for the explanation of the circuit in general.

f the AND-gates. Assign 1

– Page 8 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

<13> 12 Points – In a memory system with N=8, M=8, and 8 Data Out bits, then…

1. …how many address lines are there?

 N + M = 8 + 8 = 16.

2. …how many word lines are there?

 2N = 28 = 256.

3. …how many bit lines are there?

 8×2M = 8×28 = 23×28 = 211 = 2048.

4. …how many memory bits are there?

 28×211 = 219 = 524,288.

5. …how many AND-gates are there? (in the entire circuit)

 28 + 211 = 256 + 2048 = 2304.

6. …how many bytes of memory are there?

 2N+M = 216 = 65,536.

Grading: 2 points each. Accept power-terms such as 28 instead of 256. Remove 1 point
for “off-by-one” errors such as 27 or 29 in a case where the expected answer is 28.

– Page 9 –

CMPSCI 201 – Fall 2004 – Final Exam Answers – Professor William T. Verts

– Page 10 –

<14> 5 Points – Is the situation in the previous problem minimal? Are there different values
for M and N that result in the same number of memory bytes but fewer AND-gates?

No, it isn’t minimal. As an example, N=9 and M=7 gives 29 + 8×27 = 512 + 1024 = 1536
AND-gates.

Grading: It is not necessary to find the optimal solution, but it is necessary to show at
least one such example to justify the “no” answer. Assign 3 points for answering “no”
and assign 2 points for an example to justify the answer.

<15> 5 Points – Short Answer – What are the differences between and relative advantages and
disadvantages of static RAM cells versus dynamic RAM cells? In what hardware
situations would you use each one instead of the other?

 Static RAM is fast and retains its contents indefinitely so long as the power is applied,
but each cell requires six transistors. Dynamic RAM cells are smaller and cheaper than
static cells since they only require a single transistor (and a capacitor) per cell, but since
the capacitors “leak” their contents must be continuously refreshed to avoid data loss.
Static RAM is used in cases where a small amount of very fast RAM is required (such as
in cache). Dynamic RAM used in cases where large amounts of cheap RAM are required
(such as in primary memory).

 Grading: Assign 3 points for any reasonable answer that compares size, cost, or number
of transistors to speed and/or data retention. Assign 2 points for any reasonable
explanation of their uses.

