# CMPSCI 145 MIDTERM #2 SPRING 2014 April 2, 2014 Professor William T. Verts Solution Key

<1> 15 Points – Answer 15 of the following problems (1 point each). Answer more than 15 for extra credit. Incorrect or blank answers will be ignored.

| 137                       | What is the decimal value of the 8-bit <i>unsigned</i> binary number 10001001 ?                                                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| -9                        | What is the decimal value of the 8-bit <i>sign and magnitude</i> binary number <b>10001001</b> ?                                                      |
| -119                      | What is the decimal value of the 8-bit <i>two's complement signed</i> binary number <b>10001001</b> ?                                                 |
| W232                      | What is the SOUNDEX code for the name <b>WASHINGTON</b> ?                                                                                             |
| J250                      | What is the SOUNDEX code for the name <b>JACKSON</b> ?                                                                                                |
| L000                      | What is the SOUNDEX code for the name LEE?                                                                                                            |
| 0                         | Circle #1 is at <0,0> with radius 8. Circle #2 is at <14,0> with radius 5. How many points of intersection are there?                                 |
| 1                         | Circle #1 is at <0,0> with radius 8. Circle #2 is at <13,0> with radius 5. How many points of intersection are there?                                 |
| 2                         | Circle #1 is at <0,0> with radius 8. Circle #2 is at <12,0> with radius 5. How many points of intersection are there?                                 |
| <1,1,-3>                  | A 3D ray has equations $x(t)=4t-1$ , $y(t)=-4t+3$ , $z(t)=2t-4$ . What are the coordinates of the point at $t=\frac{1}{2}$ ?                          |
| <6,6>                     | What point in 2D is halfway between <0,5> and <12,7>?                                                                                                 |
| Yes                       | Yes or No: Can I mathematically "draw" a line (i.e., compute intermediate points) between two points in 12 dimensions?                                |
| Sphere or Triangle        | What geometric object is "most suitable" for ray-tracing? (Two allowed answers.)                                                                      |
| (A+B)×C                   | What algebraic expression is equivalent to the RPN expression <b>PUSH A, PUSH B, ADD, PUSH C, MULTIPLY</b> ?                                          |
| <b>O(N)</b>               | What is the running time (O(1), O( $\log_2(N)$ ), O(N), O(N× $\log_2(N)$ ), O(N <sup>2</sup> ), O(N <sup>3</sup> ), etc.) of a <i>linear search</i> ? |
| O(Log <sub>2</sub> (N))   | What is the running time $(O(1), O(\log_2(N)), O(N), O(N \times \log_2(N)), O(N^2), O(N^3), etc.)$ of a <i>binary search</i> ?                        |
| O(N <sup>2</sup> )        | What is the running time (O(1), O( $\log_2(N)$ ), O(N), O(N× $\log_2(N)$ ), O(N <sup>2</sup> ), O(N <sup>3</sup> ), etc.) of a <i>bubble sort</i> ?   |
| O(N×log <sub>2</sub> (N)) | What is the running time (O(1), O( $\log_2(N)$ ), O(N), O(N× $\log_2(N)$ ), O(N <sup>2</sup> ), O(N <sup>3</sup> ), etc.) of a <i>merge sort</i> ?    |
| O(1)                      | What is the running time $(O(1), O(\log_2(N)), O(N), O(N \times \log_2(N)), O(N^2), O(N^3), \text{ etc.})$ of <i>hashing</i> ?                        |
| False                     | True or False: For a binary search to work correctly, the data in the list may be in any arbitrary order.                                             |

<2> 20 Points – (5 points each) Here is a 8-bit binary number interpreted as *unsigned 10-bit fixed-point*, with <u>five</u> bits to the left and <u>five</u> bits to the right of the decimal point:

# 10101.10100

A. What is the decimal (base 10) value of this number?

21 <sup>5</sup>/<sub>8</sub> or 21.625

B. What is the *smallest binary number* that this representation can hold? (Show the result in 10-bit binary, including the decimal point.)

**00000.00000** (zero) or **00000.00001** (non-zero)

C. What is the decimal (base 10) value of the answer in part B?

0 (zero) or 1/32 = 0.03125 (non-zero)

D. What is the *largest binary number* that this representation can hold? (Show the result in 10-bit binary, including the decimal point.)

11111.11111

<3> 20 Points – (5 points each) Here is a decimal number and its true binary equivalent to be converted into *three-quarter precision*, which is a 24-bit floating-point format that follows a 1-7-16 pattern (1 bit for sign, 7 bits for the biased exponent, 16 bits for the mantissa):

(Decimal) -55.375 = (True Binary) -110111.011

A. What is the *binary scientific notation* value for this number?

-1.10111011×2<sup>5</sup>

(fraction 10111011 to be stored in mantissa)

B. What is the value in <u>decimal</u> of the *bias* for three-quarter precision?

 $2^{7-1}-1 = 2^{6}-1 = 64-1 = 63$  (added to true exponent to get biased exp.)

C. What is the value in <u>decimal</u> of the *biased exponent* for the number in this problem?

63 (bias) + 5 (true exponent) = 68 (stored as binary 1000100 in exponent field)

D. What is the <u>binary</u> representation for this number in *three-quarter precision*? (Write your answer in the boxes below. The exponent field is shaded.)

<4> 10 Points – The image below shows the tree representation for an arithmetic expression (A, B, and C are algebraic variables, #1 is just the numeric constant 1, \* means multiplication, and / means division):



1. (5 points) Write out the complete algebraic equation for the current tree representation *as shown*, including parentheses where necessary.

 $((A \times 1) + (B - B)) / (C / C)$ 

2. (5 points) Figure out how to *optimize* the tree to <u>most</u> efficiently compute the exact same value as what is shown here, and then <u>draw that resulting tree</u>.

А

 $A * 1 \rightarrow A,$   $B - B \rightarrow 0,$   $A + 0 \rightarrow A,$   $C / C \rightarrow 1,$  $A / 1 \rightarrow A$ 

<5> 15 Points – In the following Lagrange interpolation for a parabola, fill in the blanks with numbers so that the curve passes through  $P_0$  when t = 5, through  $P_1$  when t = 10, and through  $P_2$  when t = 15.

$$f(t) = \frac{(t - \underline{10})(t - \underline{15})}{(\underline{5} - \underline{10})(\underline{5} - \underline{15})} P_0 + \frac{(t - \underline{5})(t - \underline{15})}{(\underline{10} - \underline{5})(\underline{10} - \underline{15})} P_1 + \frac{(t - \underline{5})(t - \underline{10})}{(\underline{15} - \underline{5})(\underline{15} - \underline{10})} P_2$$

<6> 15 Points – Here is a linear list of names. The "front" of the list is at the left. In each case, <u>show the result of the list after a search</u>, where the order of the names in the list is updated according to various *self-organizing list* techniques.

(5 points) Tom Bob Anne Mary Fred Sam Carol

Search for Mary, Swap with Front:

# Mary Bob Anne Tom Fred Sam Carol

(5 points) Tom Bob Anne Mary Fred Sam Carol

Search for Mary, Move to Front:

# Mary Tom Bob Anne Fred Sam Carol

(5 points) Tom Bob Anne Mary Fred Sam Carol

Search for Mary, Promote One Slot:

# Tom Bob Mary Anne Fred Sam Carol

<7> 5 Points – Short Answer – If someone asked you what a particular binary number "meant," how would you answer them in light of what we have learned in this class?

It depends entirely on the <u>context</u> in which the number was generated. There is nothing inherent in any binary number which tells us which interpretation to use – although we <u>can</u> discount some interpretations (for example, 1100 cannot be BCD).