This is a reminder that exam #1 will be in-class on Monday, March 5TH. The exam is open-book, open notes. Anything on paper is OK to bring in. We will cover from the beginning of the semester up through signed and unsigned binary integer representations, but we will not cover any later topic. Chapters 1-4, and chapter 5 up through and including the Negative Integers in Binary section, pages 1-118, are fair game for the exam (but not the later sections on Gray Codes, Binary Coded Decimal, or Excess Three):

Chapter 1 - Introduction
Chapter 2 - Analog Mechanical Techniques
Chapter 3 - Digital Mechanical Techniques
Chapter 4 - Electrical and Electronic Devices
Chapter 5 - Integer Representations (up through page 118)

Although I do not think you will need a calculator, simple calculators are allowed. No graphing calculators, no calculators that have built-in base conversion functions, and no cell phone calculators, please. No other electronics permitted (no cell phones, computers, PDAs, iPods, iPads, etc.). If you took notes on a laptop, you will need to print them out to use them for the exam. I will try very hard to make the exam short enough to do in the 50-minute class time, but when you get the exam please go through it once to identify the easy problems and get them out of the way quickly. If you run short on time, I do not want you to have a bunch of easy problems left unanswered.

I know that there is a lot of material here, and obviously I cannot ask detailed questions about each topic (not unless you want a ten-hour exam; yeah, me neither), but here are the high spots. I'll try to ask representative questions from each topic group and still bring it in under 50 minutes expected completion time. Feel free to email me with questions over the next few days; if there are topics I feel to be of benefit to the entire group I'll write them up and send them out in an email broadcast.

What is the difference between an analog device and a digital device? What general characteristics of each type lead you to decide whether a particular device is analog or digital? How can you perform computations with gears, sticks, fluids, marbles, etc., and what kinds of computations can you perform? For example, I might give you a gear train and ask how fast each gear rotates relative to the driven gear. See the exercises on page 43.

How does a change in representation (such as changing a linear scale to a logarithmic scale) alter the types of calculations that can be performed? How can you use analog functional elements (e.g., resistor voltage dividers, amplifiers, ENIAC devices, etc.) to solve some computation? For example, I may give a resistor divider and ask what the output voltage is relative to the input voltage. See the exercises on pages 102-103. Although we did not discuss this in class, you should be able to compute the output of the op-amp circuit shown on page 81 for given resistor values.
What advantages do analog devices have over digital devices? What advantages do digital devices have over analog devices? How are digital functional elements (gates) similar to and different from analog functional elements?

What are the functional differences between AND, OR, NAND, NOR, XOR, and NOT gates? How can you use digital functional elements to create a circuit to solve some computation? How do punched card devices store their information? What is a bit?

How do you use 9's and 10's complement arithmetic to perform subtraction using a machine capable only of addition? How do you convert between decimal (base 10) and simple binary? For example, I may give you an addition or subtraction problem and ask for the result. The exercises on page 71 may help.

How do you represent integers in binary? Know the difference between unsigned binary integers and sign & magnitude, one’s complement, and two’s complement signed binary integers. I should be able to give you a binary number and then have you derive for me the different decimal interpretations (unsigned, S&M, 1's comp, 2's comp) for that number, as well as the equivalent hexadecimal coding. As with the 9's and 10's complement, I may give you an addition or subtraction problem in binary and ask if there is a signed or unsigned overflow. The circuit for the 8-bit adder will help here: