
A Least-Certainty Heuristic for Selective Search1

Paul E. Utgoff utgoff@cs.umass.edu
Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003

Richard P. Cochran cochran@cs.umass.edu
Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003

Abstract: We present a new algorithm for selective search by iterative expansion
of leaf nodes. The algorithm reasons with leaf evaluations in a way that leads to high
confidence in the choice of move at the root. Performance of the algorithm is measured
under a variety of conditions, as compared to minimax with α/β pruning, and to best-
first minimax.

Keywords: Selective search, evaluation function error, misordering assumption, certainty, con-
fidence, swing, evaluation goal, swing threshold, LCF, random trees, artificial time, Amazons,
Othello.

1 Introduction
It has been recognized for quite some time that some moves in a game are hopelessly subop-

timal, and that search effort should not be expended in exploring lines of play that emanate from
them. Several methods have been devised to grow the tree selectively, as discussed below. We
present a new algorithm of this kind, and investigate its characteristics.

That some positions are obviously worse than others rests on an evaluation mechanism that
recognizes apparently debilitating or fatal flaws in the position. It is pointless to investigate the
nuances of the poor play that will ensue. Less obvious are those positions in which lesser strengths
and weaknesses are evident. Nevertheless, issues of search control remain paramount. It is best
to invest effort where it will help the decision process. This calls for a more thorough expansion
of lines of play in which the relative advantage of a position is less certain, and a less thorough
expansion of lines in which the relative advantage is more certain.

2 Evaluation Function Error
The purpose of search is to obtain information that enhances the decision process at the root.

With an evaluation function that is perfectly correlated with the true game value, there is no infor-
mation to be gleaned from searching. Similarly, with an evaluation function that has no correlation
with the game value, search is equally uninformative. Search is useful when it serves to overcome
error in an evaluation function that is only imperfectly correlated.

An evaluation function assesses present utility by measuring indicators of future merit. When
these indicators predict imperfectly, as will typically be the case, search can reduce the effect of

1The correct citation for this article, (C) 2001 Copyright Springer Verlag, is: Utgoff, P. E., & Cochran, R. P. (2001).
A least-certainty heuristic for selective search. Proceedings of the Second International Conference on Computers and
Games (pp. 1-18). Springer Verlag.



A Least-Certainty Heuristic for Selective Search 2

prediction errors. For example, one can either estimate the weight of an object (heuristic evalua-
tion), or instead actually weigh it (search). The estimate is imperfectly correlated with the actual
weight, and weighing the object obviates the need to use a predicted value.

Because the evaluation function assesses a position imperfectly, it would be best to search
those positions for which the evaluation errors are most likely to affect the decision at the root. To
the extent that the distribution of errors is known, it is possible to improve the evaluation function
itself. The very nature of heuristic evaluation is that the error distribution of the evaluation function
cannot be known.

To direct search effort in a useful manner, it is necessary to make at least some weak assump-
tions about the error distribution. We make three assumptions, all of which are quite common.
The first is that the evaluation function is the best available estimator of the game value of a node
without searching below it. The second is that the variance in the error of the evaluation function
is not so large that it renders comparison of evaluations meaningless. Finally, we assume that the
evaluation of a position is on a linear scale, such that the size of the difference in two evaluations
is a useful measure of the difference in quality of the two positions.

Minimax search has the strength that its brute force search control is not guided by the evalu-
ations of the states, making the error distribution irrelevant. However, the algorithm pays the price
of searching to a uniform depth, wasting search effort on many suboptimal lines of play. Selec-
tive search has the weakness that its search control is guided by the state evaluations, making it
sensitive to evaluation errors and therefore making it susceptible to being misled. However, the
approach can search apparently promising lines to much greater depth by not squandering time on
those of less merit. There is a classic tradeoff of being unguided and shallow (risk averse) versus
being guided and deep (risk accepting).

Although we do not address evaluation function learning here, it is quite common to use an
automatic parameter tuning method such as temporal difference learning (Sutton, 1988) to adjust
the coefficients of the functional form of the evaluation function. When doing so, the error distri-
bution changes dynamically over time. One needs a decision procedure that is sensitive to the error
distribution under these circumstances too.

3 Related Work
There is much appeal to the notion of expending search effort where it has the highest chance

of affecting the decision at the root. Numerous approaches have been developed that grow the
game tree by iteratively choosing a leaf, expanding it, and revising the minimax values for the
extant tree. An alternative is to retain the depth-first search of minimax, but search to a variable
depth, such as singular extensions (Anantharaman, Campbell & Hsu, 1990) and ProbCut (Buro,
1997). The discussion here focuses on iterative tree growing.

Berliner’s (Berliner, 1979) B* algorithm attempts to bound the value of a node from below
and above by a pair of admissible heuristic functions, one pessimistic and the other optimistic.
The algorithm repeatedly selects a leaf node to expand that is expected to drive the pessimistic
value of one node above the optimistic value of all the siblings. Palay (Palay, 1982) improved the
algorithm by providing it with explicit reasoning about which child of the root to descend. This
was possible by assuming a uniform probability distribution of the range of values in the node’s
admissible interval of values. More recently Berliner & McConnell (Berliner & McConnell, 1996)
simplified the procedure for backing up probability distributions to the root.

McAllester (McAllester, 1988) proposed a search algorithm based on conspiracy numbers,



A Least-Certainty Heuristic for Selective Search 3

A
Value -8

B
Value 8
Below 6
Swing 2

C
Value 6
Above 8
Swing 3

D
Value 3
Above 8
Swing 12

E
Value -8
Above -6
Swing 2

F
Value -10
Above -6
Swing 4

G
Value -13
Above -6
Swing 7

H
Value -6
Below -8
Swing 2

I
Value -7
Below -8
Swing 1

J
Value -13
Below -8
Swing 0

K
Value -3
Below -8
Swing 5

L
Value -4
Below -8
Swing 4

M
Value -5
Below -8
Swing 3

Figure 1. Example NegaMax Search Tree

further illustrated by Schaeffer (Schaeffer, 1990). The algorithm counts the number of leaves
whose values would need to change by a given amount to affect the value of the root by a given
amount. As the number of such leaves rises, the likelihood of all the values changing as needed
drops. When the algorithm becomes sufficiently confident that the best node will remain so, search
terminates.

Rivest (Rivest, 1988) suggested guiding the iterative growth process by a penalty-based heuris-
tic. His algorithm expands the leaf node to which the root value is most sensitive. The edge penalty
is a function of the derivative of the min or max operator when represented as a generalized mean.
The cost associated with a node is the minimum path cost to a leaf below. Starting at the root, the
algorithm can follow the path of least total cost to a leaf, which is then expanded. For Connect-4,
the algorithm searches fewer nodes than minimax, but with higher total cost due to overhead.

Proof-number search (Allis, van der Meulen & van den Herik, 1994) of Allis & van den Herik
is similar in spirit to conspiracy numbers. Instead of exploring various candidate game values,
the algorithm temporarily equates all values below a candidate threshold with a loss, and the rest
with a win. With just two possible values, the algorithm searches selectively by following a path
that requires the fewest leaf values to change in order to change the decision at the root. This
search mechanism is contained within an outer binary search on candidate games values, allowing
the algorithm to home in on the game value at log cost in candidate game values. The algorithm
depends on a variable branching factor.

Korf & Chickering (Korf & Chickering, 1996) explored best-first minimax search, which al-
ways expands the leaf of the principal variation. The algorithm depends on error in the evaluation
function, and it also depends on tempo effects to cause its opinion of the principal variation to
change as search proceeds. Expansion of a leaf can make it look less attractive because the oppo-
nent has had a following opportunity to influence the position in its favor.

These algorithms all endeavor to spend search effort expanding those nodes that are needed
to reach the best decision at the root, given the error in the evaluation function. We offer the
LCF algorithm, which is based on a different heuristic for selecting the node to expand next. The
algorithm is closest in spirit to conspiracy numbers, but discards buckets of supposed target values
in favor of a real-valued approach.



A Least-Certainty Heuristic for Selective Search 4

select move()
1. allocate time for this move
2. update all swing()
3. while (time remains and tree incomplete and swing below threshold) grow tree()
4. return best move

grow tree()
1. descend path of least non-zero swing to leaf
2. expand leaf
3. backup negamax value and swing value
4. if new or revalued first or second child then update all swing()

update all swing()
1. for first child, update swing below(first,second � lookahead)
2. for each non-first child, update swing above(non first,first � lookahead)

update swing above(node,val)
1. if node is a leaf then set node � swing to max(0,val-node � lookahead)
2. otherwise, for each child of node, update swing below(child,-val)

and set node � swing to sum of swings of children

update swing below(node,val)
1. if node is a leaf then set node � swing to max(0,node � lookahead-val)
2. otherwise, for each child of node, update swing above(child,-val)

and set node � swing to minimum of swings of children

Figure 2. Move selection for LCF

4 A Least-Certainty Heuristic
The purpose of search is to establish a high-confidence best choice at the root. How can this

top-level goal be realized as a search strategy? Our approach is patterned as a proof by contra-
diction, but instead of obtaining an absolute guarantee of contradiction, we accumulate as much
evidence as possible. Assume that the actual evaluations of the first and second best children at the
root misorder them with respect to the unknown true evaluations. Under this misordering assump-
tion, the evaluations of these two children have at least as much error collectively as the difference
in their evaluations. Define swing of a node to be the minimum amount of change needed in its ac-
tual evaluation to alter the decision at the root. Now the search strategy can be oriented to achieving
this minimum change at a child of the root.

We associate a larger swing with a lower probability that the original misordering assumption
is correct. To the extent that this probability can be driven near zero, one can reject the misorder-
ing assumption with increasing confidence. We do not compute confidence levels explicitly, but
instead work directly with swing values. As the amount of minimum swing (needed to change
the decision) grows, so too does the confidence that the misordering assumption is false. This
approach is motivated in much the same way as conspiracy numbers, but we depart by considering
the minimum amount of real-valued swing, not the coarser number of leaf evaluations that would
need to change by some fixed amount. When considering the swing for each of the evaluations,
one should search a line of play in which the swing is least. Our algorithm for doing this is called
LCF because is uses best-first search to investigate the line of least certainty (confidence/swing)



A Least-Certainty Heuristic for Selective Search 5

first.
Consider the example search tree in Figure 1, which assumes that the value of a node is the

negative of the maximum (negamax) of its children. Although the figure shows a fixed depth tree,
the search tree will typically vary in depth. At any node, the best move is the one that produces the
highest-valued child. Node B, with value 8, is currently the highest-valued child of the root. The
second best child is node C, with value 6. To change the move selection at the root, node B must
come not to have the highest value. One can attempt to accomplish this in a variety of ways.

One can infer a target value for a node based on a value that, if achieved, would change the
decision at the root. The only means of changing a value of a node is to expand a leaf at or below
the node such that the backed-up move value at the node will be different. So, in this example, one
goal for changing the decision at the root would be to drive the value of node C above 8. Another
goal would be to drive the value of node B below 6. Yet another goal would be to drive the value
of node D above 8. Generally, one can attempt to drive the best value down below the second
best value, or one can attempt to drive a non-best value above the best value. There is no need
to consider simultaneous goals, such as to drive B down to 6 � 8 and drive C up to 6 � 9 because one
can achieve the same effect by proceeding one goal at a time, which is necessarily enforced when
expanding one leaf at a time.

Given the three goals, one each for each child of the root, which should be pursued first? If
these three nodes were leaves, then one could reason that to change the value 3 of node D to its
goal of 8 would require a swing of 5 in the valuation. However, to change the value 6 of node C to
8 would require a smaller swing of 2. Similarly, to change the value 8 of node B to 6 would also
require only a swing of 2. Assuming that the size of swing is related to the size of the implied error
in the evaluations, smaller swings should be easier to achieve than larger swings. Hence, there is
more promise in descending node B or C than for node D.

Consider how evaluation goals and swing values are computed when searching deeper than
one ply. How are these values managed in the negamax representation? How is a goal to raise an
evaluation handled differently from a goal to lower an evaluation?

Suppose that each of node B, node C, and node D have been expanded previously, and that
their children evaluate as indicated in the figure. To drive the value of node D up to 8, one would
need to drive the value of every child below � 8. This is because the negamax formulation assigns
node values from the point of view of the player on move, and negates the maximum when backing
up to the parent. One negates the evaluation subgoals in a corresponding manner. For example, all
values need to be driven below � 8, so that the maximum will be below � 8, which will push the
negated backed-up value above 8.

Given that the goal at each of nodes K, L, and M is to drive its value below � 8, one can
determine the size of the swing in evaluation needed at each. For node K it is � 3 � � � 8 ��� 5, for
node L it is � 4 � � � 8 ��� 4, and for node M, it is � 5 � � � 8 ��� 3. Because all these swings need to
occur, the total amount of swing needed below node D is now 5 � 4 � 3 � 12. The same reasoning
applies below node C, giving a total swing of 2 � 1 � 0 � 3. Notice that node J has value � 13,
which is already below the goal of � 8, so a swing of 0 (none) is needed to meet that goal.

For node B, the goal is to drive its value below 6, which means that the goal for each of nodes
E, F , and G is to drive it above � 6. For node E, the required swing is � 6 � � � 8 �	� 2, for node F
it is � 6 � � � 10 �
� 4, and for node G it is � 6 � � � 13 �
� 7. If any of these goals were achieved,
there would be a new maximum value among them, so it is necessary to achieve just one to change
the decision at the root. The minimum of the swings is ascribed to the parent node B, giving it a



A Least-Certainty Heuristic for Selective Search 6

0

50

100

150

200

1000 10000 100000 1e+06 1e+07 1e+08

W
in

s 
ou

t o
f 2

00

Time units

b=2
b=10
b=20

Figure 3. LCF versus AB

swing of 2. Of course it already had a swing of 2. The example would become more interesting
after expanding node E, because the swing needed at E would become the sum of the swings of its
children.

The LCF algorithm is shown in Figure 2. It is best-first search, with its metric based on total
swing required to achieve the goal of changing the decision at the root. One grows the tree by
repeatedly starting at the root, and selecting the node with the least non-zero amount of swing
required. Note that a swing of 0 is acceptable for children of the root because it indicates two or
more top-rated children. Further below however, a 0 means that there is nothing to achieve by
searching below the node. Ties by swing value are broken randomly and uniformly. When a leaf
is reached, it is expanded, and the normal backing up of negamax values to the root is performed.

The swing values are updated during the backup to the root. If the child selected at the root
retains its value, then all the swing values are correct, and nothing more need be done. However,
if the value has changed and the child was or is one of the first or second-best values, then all the
goals and swing values have been invalidated. In this case, the tree is traversed with the new pair of
best and second best values, updating the goals and swing values. From an efficiency standpoint,
one would hope for no change in best/second values at the root, but this would be shortsighted
since the objective is to determine the best choice at the root.

Finally, how does one know when to stop searching? Of course one needs to stop when the
time allocation runs short. However, when the best node is highly likely to remain the best node,
the utility of additional searching diminishes. One measure of diminishing utility is the minimum
amount of swing needed to change the decision at the root. As this number grows, the chances of
achieving it presumably shrink. Depending on the unit of evaluation, one can set a fixed threshold
on total swing that, if exceeded, would cause the search to terminate.

5 Experimental Comparison
How does LCF compare to other known algorithms? In this section, we compare three algo-

rithms in three domains. In addition to LCF, we include best-first minimax (BFMM) and minimax



A Least-Certainty Heuristic for Selective Search 7

0

50

100

150

200

1000 10000 100000 1e+06 1e+07 1e+08

W
in

s 
ou

t o
f 2

00

Time units

b=2
b=10
b=20

Figure 4. BFMM versus AB

with α � β pruning (AB). The first domain is the class of random-tree games. The second is the
game Amazons, and the third is the game Othello.

5.1 Random-Tree Games
The characteristics of a two-person zero-sum perfect-information game can be summarized

reasonably well by a small set of parameters. The branching factor of the game tree is important
because it dictates how quickly the number of states multiplies as a function of search depth. For
a fixed amount of search effort, one can search more deeply in a tree that branches less. The
length of the game affects the depth of the search that is needed to analyze the game tree. For
average branching factor b and average depth d, the game tree will contain O

�
bd � states. For

non-trivial games, one searches a relatively small portion of the game tree when selecting a move.
The total time available affects how much search effort can be expended during play. More time
enables more searching, which improves play in non-pathological games. The node generation
cost, including node evaluation, also impacts the amount of search that can be accomplished in a
fixed amount of time. Finally, the error distribution of the evaluation function will mislead search
algorithms that are guided by functions of node evaluation.

For our purposes, we vary average branching factor and total time available, holding the others
fixed. We follow Korf & Chickering, and Berliner, by using an artificial class of games modeled
as random trees. These games can be played at low cost, making a large exploration feasible.

For a random tree, an integer index is associated with each node. For a complete O
�
bd � tree,

it is straightforward to map each possible state to a unique integer by computing the breadth-order
index of the node. The index of each node indexes a random number sequence. This means that a
random number is associated with each node, but this indexing method ensures that the mapping
of nodes to random numbers is reproducible, no matter what part of the tree is being traversed at
any time. The random value associated with each node is the incremental change in the evaluation
of that node, called the edge value. The value of the root, which has no edge to a parent, is 0. The
heuristic value of a leaf node is the sum of the edge values from that leaf node up to the root.

For our experiments, we follow K&C, using a random number sequence whose period is 232.



A Least-Certainty Heuristic for Selective Search 8

0

50

100

150

200

1000 10000 100000 1e+06 1e+07 1e+08

W
in

s 
ou

t o
f 2

00

Time units

b=2
b=10
b=20

Figure 5. LCF vs BFMM

Every node index is taken as the modulus of this period length, ensuring that it falls within the
bounds of the sequence. The random number that is indexed in this way is further modulated to
fall within � � 214 � 214 � 1 � . The purpose of this indexing scheme is to determine a reproducible
random edge value in the evaluation. For any particular branching factor b, game depth d, and
random number sequence r, one obtains a particular game. Changing any of these parameters
defines a new game. For our experiments, we fixed the depth at 64.

There are two attractive aspects of using random trees. The first is that the computational
requirements for node generation and evaluation are only slight. Second, the evaluation function is
imperfectly correlated with the true game value. For example, the sum of the edge values from the
root to a final game state gives the game value of the final position exactly. Backing up one step,
the sum of the edge values from the root to this previous state is well correlated with the game
value, with the last unspecified incremental change introducing some variability. This models very
well the typical situation in which an evaluation function is better at evaluating positions near the
end of the game than near the beginning.

Because node generation is inexpensive, we simulate this cost in artificial time units. This is
a departure from previous studies in which time is measured by the number of nodes generated.
By using artificial time units, one can charge for a variety of different operations as deemed ap-
propriate. For most of the experiments here, we charge one (1) time unit for traversing a node
pointer for any reason, and 100 time units for generating and evaluating a node. The swing cutoff
threshold was not used for these experiments because we wanted to minimize confounding time
management with heuristic search control. It would help to stop searching when the choice is clear
because that time would be available for a subsequent move.

Figure 3 shows the number of wins for LCF when pitted against AB. Artificial time units were
charged identically for the AB algorithm, which used static node ordering. Time management for
AB was implemented by computing the maximum depth k that could be searched within the time
allotment, assuming that b0 � 75k nodes will be generated. The 200 games played for each branching
factor b and time allotment t, consisted of 100 pairs of games. In each pair, the same random



A Least-Certainty Heuristic for Selective Search 9

Relative size by subtree Move measures Relative size by depth

Root at depth 0, leaf expansion frames 0-45

Figure 6. LCF Expansions for Random Tree

number sequence r was employed, with each player going first in one of the games. The random
number sequence was varied from one pair to the next.

In the figure, one can observe a variety of combinations of branching factor and time allot-
ment. The lines connecting these points help visually with grouping, but are only suggestive of
results for intervening time allotments. For average branching factor b � 2, LCF won all 200
games for all time allotments. For b � 10, LCF lost a majority of the games at the smallest time
allotment, but won all 200 games for the remaining allotments. Similarly, for b � 20, LCF is at a
disadvantage only for the two smallest allotments.

K&C’s best-first minimax (BFMM) was implemented by modifying the LCF code to expand



A Least-Certainty Heuristic for Selective Search 10

Relative size by subtree Move measures Relative size by depth

Root at depth 0, leaf expansion frames 0-45

Figure 7. BFMM Expansions for Random Tree

the principal leaf, and to skip computation of swing values. Figure 4 shows how BFMM fared
in the identical experimental setup that was used for the LCF comparison. One can observe the
same pattern, that the leaf expander is at a disadvantage for the smaller time allotments, and at an
advantage for the larger allotments.

Which of LCF and BFMM is stronger under various conditions? Figure 5 shows a com-
parison following the same experimental design as before. In this context, as the time allotment is
increased, the LCF algorithm becomes weaker than the BFMM algorithm. We note that for smaller
allotments, LCF is favored. We ran a version of LCF that did not charge for the overhead of main-
taining the swing values, and saw the same fundamental pattern. The explanation rests somewhere



A Least-Certainty Heuristic for Selective Search 11

Table 1. Amazons Tournaments Results
5 mins 10 mins 20 mins 30 mins Total

LCF 0 LCF 0 LCF 0 LCF 2 LCF 2
BFMM 2 BFMM 2 BFMM 2 BFMM 0 BFMM 6
LCF 2 LCF 0 LCF 1 LCF 0 LCF 3
AB 0 AB 2 AB 1 AB 2 AB 5
BFMM 1 BFMM 1 BFMM 0 BFMM 1 BFMM 3
AB 1 AB 1 AB 2 AB 1 AB 5

within the actual node selection strategy.
Figure 6 shows the search activity of the LCF algorithm for the first move of a particular

random tree game. Figure 7 shows the search activity of the BFMM algorithm in the same setting.
LCF expands 74 leaves in the time that BFMM expands 88 leaves. This difference is most likely
due to the overhead cost of LCF in computing swing values. An attractive property of BFMM is
that it has no extra measures to compute for the game tree.

Each figure consists of three columns of information. The middle column depicts information
regarding the children of the root. A lower triangle indicates a node with lowest swing value, and
an upper triangle indicates a node with highest move value. A box identifies a node that has both
lowest swing value and highest move value. A circle denotes a node that is suboptimal in both
senses. If the symbol is filled (solid black), then that is the child of the root that was selected for
descent to a leaf to be expanded.

Notice that LCF explores several moves, principally child0 and child4. BFMM spends most
of its time below child4, though at expansion 48 (not shown), it switches to child0 and sticks with
it to the end of the search at expansion 88. LCF also settled fundamentally on child0 at expansion
44.

The lefthand column of the figure shows the proportion of nodes in each subtree of the root
after each expansion. The values are connected to improve readability. At each expansion (row in
the figure), observe the distance between each of the lines. It is evident that for LCF the growth is
mostly below child0 and child4, whereas for BFMM the growth is mostly below child4.

The righthand column shows after each expansion (row) the proportion of nodes at each depth
of the tree. Initially, all nodes are at depth 1, just below the root. Subsequently, there are expansions
at depth 2, and later at various depths. The proportion of nodes at depth 0 is the leftmost area
(between lines) in the column. The BFMM algorithm tree becomes narrower and deeper than the
LCF tree during this particular search.

5.2 Amazons
Amazons is played on a 10x10 board. Each player has four amazons, which move like chess

queens. To take a turn, the player-on-move selects one of his/her amazons, moves it like a chess
queen to an empty square, and from its resting point throws a stone as though it were a second
chess queen move. Where the stone lands is permanently blocked. The last player to move wins.
The game has elements of piece movement and territory capture.

Three version of an Amazons program were implemented, an LCF version, a BFMM version,
and an AB version. The LCF version generates the children of a node in a particular way, keeping
up to the ten best. The BFMM version is identical except for its search method as described above.



A Least-Certainty Heuristic for Selective Search 12

Relative size by subtree Move measures Relative size by depth

Root at depth 0, leaf expansion frames 0-45

Figure 8. LCF Expansions for Amazons

Similarly, the AB version differs in just its search method and time management policy. It uses
iterative-deepening negamax search with static node ordering. The three programs were pitted
against one another in four round-robin tournaments of various time allocations. The results are
summarized in Table 1. AB won a total of ten (10) games, BFMM nine (9) games, and LCF five
(5) games. Again, LCF is weaker than BFMM. Remarkably however, AB is not dominated by LCF
or BFMM, as it was in the Random-Trees case. Variable branching factor, an issue discussed by
Korf & Chickering, is not an issue here because it was uniformly ten during the decisive portion of
the game.

Figure 8 shows the search behavior of LCF during the first move of a game of Amazons.



A Least-Certainty Heuristic for Selective Search 13

Relative size by subtree Move measures Relative size by depth

Root at depth 0, leaf expansion frames 0-45

Figure 9. BFMM Expansions for Amazons

Table 2. Othello LCF versus BFMM Results
1 min 10 mins 30 mins 60 mins Total

LCF 5 LCF 8 LCF 3 LCF 5 LCF 21
BFMM 5 BFMM 2 BFMM 7 BFMM 4 BFMM 18

Similarly, Figure 9 shows the same information for BFMM. LCF expanded 250 leaves, and BFMM
expanded 245 leaves, which is virtually identical. LCF explores principally child2 and child3

throughout this search, settling on child3. BFMM explores a large variety throughout its 245
expansions, settling on child0. These behaviors have ‘swapped’ in some sense from random trees,



A Least-Certainty Heuristic for Selective Search 14

Relative size by subtree Move measures Relative size by depth

Root at depth 1, leaf expansion frames 0-45

Figure 10. LCF Expansions for Othello

where LCF was the more varied of the two.

5.3 Othello
For the game of Othello, we also prepared LCF, BFMM, and AB versions that were identical

except for the method of search. At a time allocation of one minute total per player for all moves of
the game (very quick game), the LCF version won two of ten games against the AB version, and at
all large time allocations lost all games. We did not pit BFMM against AB, but Korf & Chickering
report their BFMM Othello program doing poorly against their AB Othello program. Regarding
our LCF version against our BFMM version, we ran a large number of games at various time



A Least-Certainty Heuristic for Selective Search 15

Relative size by subtree Move measures Relative size by depth

Root at depth 1, leaf expansion frames 0-45

Figure 11. BFMM Expansions for Othello

allocations, as summarized in Table 2. The programs appear to be of fundamentally equal strength
in this setting. A tenth game at the 60 minute time allocation was a draw, and is not included in the
table.

Figure 10 shows the search behavior of LCF during the second move of a game of Othello, as
does Figure 11 for BFMM. LCF explores the two openings that are well-regarded and shuns the
third. BFMM latches onto one of the openings, exploring it at great depth. Examination of traces
of this kind shows that both algorithms conduct searches that are quite narrow and deep.



A Least-Certainty Heuristic for Selective Search 16

6 Discussion
It is disappointing that LCF or BFMM do not produce play that is stronger than AB. (It ap-

pears that superior performance for random tree games is a special case.) It is naturally appealing
to want to search those parts of the tree that are most likely to be informative. However, evaluation
functions are imperfect, encoding a variety of strengths and weaknesses that collectively bias posi-
tion assessment. To use such a function to guide search has a circular dependency. Imperfect value
assessment implies imperfect relevance assessment. Searching those nodes that appear to bear on
(are relevant to) the choice at the root is subject to the blind spots of the evaluation function, yet
that is exactly what the search was intended to overcome.

7 Summary
We have presented a new heuristic for guiding best-first adversary search. The misordering

assumption provides a basis for achieving goals in real-valued node evaluation. The notion of
swing, and its relation to certainty, provides a new search heuristic. This approach was motivated
by the work on conspiracy numbers, with the goal of eliminating the need to compute certainty
with respect to an assortment of proposed game values. Although this goal has been achieved, the
only evidence we have so far is that a player using the LCF algorithm in a real game (Amazons,
Othello) will be weaker than a player using a minimax variant.

Acknowledgments
This material is based on work supported by the National Science Foundation under Grant

IRI-9711239. Rich Korf shared his code for efficient indexing of a random number sequence.
Gang Ding, David Stracuzzi, and Margaret Connell provided helpful comments.

Allis, L. V., van der Meulen, M., & van den Herik, H. J. (1994). Proof-number search. Artificial
Intelligence, 66, 91-124.

Anantharaman, T., Campbell, M.S., & Hsu, F-h (1990). Singular extensions: Adding selectivity to
brute-force searching. Artificial Intelligence, 43, 99-109.

Berliner, H. (1979). The B* tree search algorithm: A best-first proof procedure. Artificial Intelli-
gence, 12, 23-40.

Berliner, H., & McConnell, C. (1996). B* probability based search. Artificial Intelligence, 86,
97-156.

Buro, M. (1997). Experiment with multi-probcut and a new high-quality evaluation function for
Othello. Proceedings of the Workshop on Game-Tree Search. Princeton: NEC Research Insti-
tute.

Korf, R. E., & Chickering, D. M. (1996). Best-first minimax search. Artificial Intelligence, 84,
299-337.

McAllester, D. A. (1988). Conspiracy numbers for min-max search. Artificial Intelligence, 35,
287-310.

Palay, A. J. (1982). The B* tree search algorithm - new results. Artificial Intelligence, 19, 145-163.



A Least-Certainty Heuristic for Selective Search 17

Rivest, R. (1988). Game tree searching by min/max approximation. Artificial Intelligence, 34, 77-
96.

Schaeffer, J. (1990). Conspiracy numbers. Artificial Intelligence, 43, 67-84.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences. Machine Learning,
3, 9-44.


