Task: Fine-grained recognition

- **Example**: distinguish the two bird species
 - California gull
 - Ringed beak gull

- **Challenge**: intra-category variation vs. inter-category variation
 - Location, pose, viewpoint, background, lighting, gender, etc

Approach 1: Part-based models

- **Localize parts and compare** corresponding locations

Approach 2: Texture-based models

- **Image as a collection of patches**

Goal: combine the best of both approaches

Proposed approach: Bilinear CNN model

- **Bilinear model** is a four tuple:
 \[f : \mathcal{L} \times I \rightarrow R^{D} \]
 \[B = (f_A, f_B, f_C, f_D) \]

 - **Feature extractor**
 - **Pooling**
 - **Classification**

- **Classification pipeline**:
 1. For each location \(i \), extract features \(f_A(l, I) \) and \(f_B(l, I) \)
 2. Take the outer product: \(\text{bilinear}(l, I) = f_A(l, I)^T \cdot f_B(l, I) \)
 3. Pool across locations: \(\Phi(I) = \sum \text{bilinear}(l, I) \)
 4. Predict class probability: \(\text{softmax}(\Phi(I)) \)

- **Motivation**:
 - Model pairwise feature interactions in a translationally invariant manner
 - Compositional features — \(O(n^2) \) representation with \(O(n) \) features
 - End-to-end learning of parameters

Experiments

- **Classification accuracy**:
 - Using image labels only (no part or bounding-box annotations)
 - CNNs used: VGG-M [M] (Chatfield et al.) and VGG-VERYDEEP-16 [D] (Simonyan et al.)

<table>
<thead>
<tr>
<th>Method</th>
<th>CUB-200-2011</th>
<th>FGVC-Aircraft</th>
<th>Stanford Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fisher vector SIFT</td>
<td>18.8 w/ ft</td>
<td>61.0 w/ ft</td>
<td>59.2 w/ ft</td>
</tr>
<tr>
<td>Fully connected CNN</td>
<td>52.7 w/ ft</td>
<td>44.4 w/ ft</td>
<td>37.3 w/ ft</td>
</tr>
<tr>
<td>FC-CNN [M]</td>
<td>61.0 w/ ft</td>
<td>45.0 w/ ft</td>
<td>36.5 w/ ft</td>
</tr>
<tr>
<td>FC-CNN [D]</td>
<td>61.0 w/ ft</td>
<td>45.0 w/ ft</td>
<td>36.5 w/ ft</td>
</tr>
<tr>
<td>Fisher vector CNN</td>
<td>61.1 w/ ft</td>
<td>64.3 w/ ft</td>
<td>70.8 w/ ft</td>
</tr>
<tr>
<td>FC-CNN [M]</td>
<td>71.3 w/ ft</td>
<td>70.4 w/ ft</td>
<td>75.2 w/ ft</td>
</tr>
<tr>
<td>FC-CNN [D]</td>
<td>72.0 w/ ft</td>
<td>72.7 w/ ft</td>
<td>77.8 w/ ft</td>
</tr>
<tr>
<td>Bilinear CNN</td>
<td>80.1 w/ ft</td>
<td>78.4 w/ ft</td>
<td>83.9 w/ ft</td>
</tr>
<tr>
<td>Bilinear CNN</td>
<td>80.1 w/ ft</td>
<td>84.0 w/ ft</td>
<td>84.1 w/ ft</td>
</tr>
</tbody>
</table>

- **Previous Work**: 84.1 [w/o b-box], 73.9 [w/o b-box], 75.7 [w/o b-box]

- **Visualizations on the CUB dataset**
 - Top activations of various conv5 filters in the fine-tuned B-CNN [D,M] model

- **Effect of fine-tuning**:
 - FC-CNN: big improvements on aircrafts (29%) and cars (43%)
 - FV-CNN: indirect fine-tuning, i.e. using fine-tuned FC-CNN for FV-CNN, leads to 3-10% improvement
 - B-CNN: Fine-tuning improves results (4-7%)
 - Fairly efficient during testing: 10 fps for the B-CNN [D,D] model
 - Translational invariance: 84.1% (w/o b-box) vs. 85.1% (w/o b-box)

References