CmpSci 201
Homework 4

1. Given the following code:

```assembly
function1:
    STMDB    R13!, {R8, R9, R10, R14}
    <some operations>
    BL       function2
    <some other operations>
    LDMIA    R13!, {R8, R9, R10, R14}
    MOV      PC, R14

function2:
    STMDB    R13!, {R8, R14}
    MUL      R8, R4, R4
    MUL      R8, R8, R8
    LDMIA    R13!, {R8, R14}
    MOV      PC, R14
```

What will the stack look like just before `MUL R8, R4, R4` is executed?

2. The following code does not correctly implement the calling convention. Insert the missing code necessary to fix it:

```assembly
foo:
    STMDB    R13!, {R8, R14}
    MOV      R8, #4
    ADD      R8, R8, R4
    BL       bar

bar:
    MOV      R8, R4
    ADD      R8, R8, #1
    MOV      R4, R8
    LDMIA    R13!, {R8, R14}
    MOV      PC, R14
```
3. You need to calculate Fibonacci numbers, and so come up with the following pseudo-code:

```c
int fib(int n)
{
  if(n == 0)
  {
    return 1;
  }else if(n == 1)
  {
    return 1;
  }else
  {
    return fib(n - 1) + fib(n - 2)
  }
}
```

This code computes the n^{th} Fibonacci number (assuming we’re only handed positive values for n). Convert the code to ARM assembly, you must implement it as a real function obeying the calling convention described in the lectures. Note that there are more efficient ways of computing Fibonacci numbers (but you don’t have to use them, just implement the code above).