
Incremental Semantically Grounded
Learning from Demonstration

Scott Niekum∗, Sachin Chitta†, Bhaskara Marthi‡, Sarah Osentoski§ and Andrew G. Barto∗
∗University of Massachusetts Amherst, Amherst, Massachusetts 01003

Email: sniekum@cs.umass.edu
†Willow Garage, Menlo Park, CA 94025

‡Vicarious Systems, Inc, Union City, CA 94587
§Robert Bosch LLC Research and Technology Center, Palo Alto, CA 94304

Abstract—Much recent work in robot learning from demon-
stration has focused on automatically segmenting continuous
task demonstrations into simpler, reusable primitives. However,
strong assumptions are often made about how these primitives
can be sequenced, limiting the potential for data reuse. We
introduce a novel method for discovering semantically grounded
primitives and incrementally building and improving a finite-state
representation of a task in which various contingencies can arise.
Specifically, a Beta Process Autoregressive Hidden Markov Model
is used to automatically segment demonstrations into motion
categories, which are then further subdivided into semantically
grounded states in a finite-state automaton. During replay of
the task, a data-driven approach is used to collect additional
data where they are most needed through interactive corrections,
which are then used to improve the finite-state automaton.
Together, this allows for intelligent sequencing of primitives
to create novel, adaptive behavior that can be incrementally
improved as needed. We demonstrate the utility of this technique
on a furniture assembly task using the PR2 mobile manipulator.

I. INTRODUCTION

A perennial goal of robotics has been the creation of robots
that can exhibit a wide range of intelligent behaviors in diverse
environments. While advances in machine learning techniques
have improved the quality of such learned behaviors, both
researchers and end-users alike need tools that can help them
deal with the vast number of behaviors and environments that
must be mastered by a robot deployed in the real world. For
this reason, robot learning from demonstration (LfD) [2] has
become a popular way to program robots. LfD allows users
to teach a robot by example, often eliminating the need for
specialized knowledge of the robotic system and taking much
less time than it would take an expert to design a controller
by hand.

While much LfD research has focused on tasks that can
be represented by monolithic policies, some recent work
has focused on automatically segmenting demonstrations into
simpler primitives that can be sequenced to perform complex,
multi-step tasks [7, 10, 13]. Such segmentations can be per-
formed by humans, but this may require specialized knowl-
edge, such as the robot’s internal representations and kinematic
properties. Furthermore, manually managing, memorizing, and
reusing a library of primitives becomes intractable for a human
user as the library grows in size. Thus, it is advantageous for
primitives to be automatically segmented and managed.

Automatic segmentation and recognition of repeated struc-
ture in a task makes learning more tractable, enables data
reuse and transfer, and can reveal exploitable invariants in the
data. However, autonomous segmentation and management of
primitives also implies the need for the automated sequencing
of these primitives to perform a task. Current LfD methods
take a variety of approaches to sequencing, ranging from
associative skill memories [16], in which all primitives are
made available for selection at each decision point, to other
schemes in which primitives are executed in a fixed order
[1, 13]. We argue that a method between these two extremes
is most effective, in which there is flexibility in choosing what
primitive is scheduled next, but the choices are limited at each
decision point to keep the discriminative task tractable as the
number of primitives grow.

A novel method is presented to sequence automatically
discovered primitives that makes minimal assumptions about
the structure of the task and can sequence primitives in
previously unseen ways to create new, adaptive behaviors.
Specifically, a Beta Process Autoregressive Hidden Markov
Model is used to segment continuous demonstration data into
motion categories with associated coordinate frames. Tests are
then performed on the motion categories to further subdivide
them into semantically grounded movement primitives that are
used to create a finite-state representation of the task. In this
representation, each state has an associated set of exemplars
of the relevant movement primitive, plus a trained classifier
used to determine state transitions. The resulting finite-state
automaton (FSA) can then be used to replay a complex, multi-
step task.

However, initial demonstrations do not always cover all the
possible contingencies that may come up during the execution
of a task. When most LfD methods fail at task replay, the
onus is on the user to design new demonstrations that can
fill in the gaps in the robot’s knowledge. Instead, a data-
driven approach is introduced that provides additional data
where they are most needed through interactive corrections.
These corrections are provided by the user at the time of
failure and are treated as additional demonstrations that can
be segmented, used to improve the structure of the FSA, and
provide additional examples of relevant primitives. Together,
this allows for iterative, incremental learning and improvement

of a complex task from unsegmented demonstrations. The
utility of this system is shown on a complex furniture assembly
task using a PR2 mobile manipulator.

II. BACKGROUND

A. Beta Process Autoregressive Hidden Markov Model

The Beta Process Autoregressive Hidden Markov Model
(BP-AR-HMM) [5] fixes two major problems with the stan-
dard HMM for segmenting continuous demonstration data.
First, rather than depending on a fixed number of hidden
modes, it uses a beta process prior that leverages an infinite
feature-based representation, in which each demonstration can
exhibit a subset of the total number of discovered modes and
switch between them in a unique manner. Thus, a potentially
infinite library of modes can be constructed in a fully Bayesian
way, in which modes are flexibly shared between demonstra-
tions, and an appropriate number of modes is inferred directly
from the data without the need for model selection. Second,
rather than modeling observations as independent given the
mode, the BP-AR-HMM is autoregressive and can describe
temporal dependencies between continuous observations as a
vector autoregressive (VAR) process, a special case of a linear
dynamical system. The generative model for the BP-AR-HMM
can be summarized as follows [6]:

B|B0 ∼ BP(1, B0)

Xi|B ∼ BeP(B)

π
(i)
j |fi, γ, κ ∼ Dir([γ, ..., γ + κ, γ, ...]⊗ fi)

z
(i)
t ∼ π

(i)

z
(i)
t−1

y
(i)
t =

r∑
j=1

A
j,z

(i)
t
y
(i)
t−j + e

(i)
t (z

(i)
t)

First, a draw B from a Beta Process (BP) provides a set of
global weights for the potentially infinite number of modes.
Then, for each demonstration, an Xi is drawn from a Bernoulli
Process (BeP) parameterized by B. Each Xi can be used to
construct a binary vector fi indicating which of the global
features, or modes, are present in the ith time series. Thus,
B encourages sharing of features amongst multiple demon-
strations, while the Xi leave room for variability. Next, given
the features that are present in each demonstration, for all
modes j, the transition probability vector π(i)

j is drawn from
a Dirichlet distribution that is symmetric, with the exception of
the dimension corresponding to self-transition bias κ. A mode
z
(i)
t is then drawn for each time step t from the transition

distribution of the mode at the previous time step. Finally,
given the mode at each time step and the order of the model,
r, the observation is computed as a sum of mode-dependent
linear transformations of the previous r observations, plus
mode-dependent noise.

B. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) [9] are a formu-
lation that can describe the evolution of dynamical systems

over time using a system of nonlinear differential equations.
DMPs have many desirable properties for reproducing and
generalizing movements in LfD: they are provably stable and
convergent, scale naturally in time and space, and afford
simple LfD and reinforcement learning algorithms.

One formulation of DMPs [14] for discrete movements can
be described as:

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (1)
τ ẋ = v (2)
τ ṡ = −αs, (3)

for spring constant K, damping constant D, position x,
velocity v, goal g, phase s (a 0-1 surrogate for time), temporal
scaling factor τ , and constant α. The nonlinear function f
is approximated by a weighted set of basis functions ψi(s),
scaled by the phase variable, s: f(s) =

∑N
i=1 wiψi(s)s.

Given a demonstration trajectory x(t), ẋ(t), ẍ(t) of length
T , we can use LfD to learn the weights for the basis functions
[18]. Rearranging Eq. 1, integrating Eq. 3, and substituting in
the demonstration for the appropriate variables results in:

ftarget(s) =
τ2ẍ+ τDẋ

K
− (g − x) + (g − x0)s. (4)

A simple linear regression problem to find the weights wi
can then be obtained by choosing an α, setting K and D for
critical damping, and setting the goal to g = x(T).

III. CONSTRUCTING FINITE-STATE TASK
REPRESENTATIONS

A finite-state automaton (FSA) is a natural representation
for modeling transitions between discrete primitives. By using
DMPs at a low-level to represent movement primitives and
an FSA for high-level decision making, the advantages of
both can be gained, allowing the representation of virtually
any continuous motion, while also being able to flexibly
make critical choices at a small number of discrete decision
points. To define an FSA that represents a task, a notion of
states and transitions is required. A state in the FSA ideally
corresponds to a semantically meaningful step or action in the
task that implies that a particular primitive should be executed.
Each state stores a list of exemplars of a particular primitive
that have been observed from demonstration. Transitions are
dictated by a mapping from observations to successor states,
which can be implemented as a multi-class classifier.

However, segmentation of demonstrations via the BP-AR-
HMM provides us with motion categories based on statistical
properties of the movements, not semantically meaningful
actions. For example, a small twist of the wrist required as
part of a grasp can have a nearly identical VAR formulation
as the continuous twisting required to screw a piece in during
an assembly task; these movements have different semantic
meanings, but similar statistical properties. So how can seman-
tically grounded primitives be created from motion categories?

We make the assumption that exemplars of a semantically
grounded primitive will generally fall into the same motion
category (i.e. have similar statistical properties), but that all

Fig. 1. Overview of the iterative learning from demonstration framework.

examples of a particular motion category will not necessarily
belong to the same primitive. Following this logic, exem-
plars of motion categories can be split into multiple groups
that correspond to grounded primitives by using semanti-
cally meaningful splitting criteria. This can be achieved by
performing splits based on the correlation of state visitation
history with other types of semantic information, such as the
exemplar’s coordinate frame, length, or successor state. The
state visitation history of an exemplar (the states in the FSA
that the previous segments in the demonstration trajectory
belong to) is a critical piece of information for splitting,
because it provides a notion of sequence—examples of a
motion category may be repeated several times in a task, but
may correspond to semantically different primitives that are
appropriate during various phases of task progress. In this case,
only parent states are examined, i.e. one-step histories, due to
the relative sparsity of data in an LfD setting.

If a semantic difference between exemplars at a single
state (such as the coordinate frame of the exemplar) can be
predicted by the parentage of the exemplar, then splitting the
state has several benefits. First, it helps to determine which
exemplars should be considered in different phases of the task.
Such a split reduces the number of possible transitions from a
single state, removing some of the burden from the transition
classifiers and mitigating perceptual aliasing, where perceptual
information alone is not enough to correctly determine the next
action. This also has the effect of minimizing the number
of semantically incorrect exemplars that can be chosen at a
particular state, while maximizing data reuse by only splitting
when it is warranted by correlative evidence—splitting at every
node with multiple parents would induce a very strong notion
of sequence, but would over-segment the data into many states,
each of which would have very few associated exemplars and
could only be executed in an order that had previously been
observed.

It is not expected that this process will always work on
the first try, due to factors like unforeseen contingencies and
lack of sufficient data. Thus, a way to incrementally improve
the FSA structure and task performance is required. For

this, a data-driven method of providing interactive corrections
is used that allows the user to halt task execution at any
time and provide a corrective demonstration of the remainder
of the task. This provides additional data where they are
most needed—situations in which intervention is required for
successful execution—through a natural, intuitive mechanism.
Corrections can be used to account for unanticipated situations
that were not covered in the original demonstrations, contin-
gencies like missing a grasp or dropping an object, or incorrect
movement sequencing. These corrections can then be treated
as additional demonstrations and jointly segmented with the
rest of the existing data, producing an improved FSA structure
with additional exemplars of relevant primitives. This iterative
process can be repeated as needed to address shortcomings in
performance as errors occur. Figure 1 shows an overview of
the whole system, which is described in greater detail in the
following section.

IV. METHODOLOGY

A. Demonstrations and segmentation

For all experiments, a PR2 mobile manipulator is used as
the robotic platform. Task examples are provided to the robot
via kinesthetic demonstrations, in which the teacher physically
moves the arms of the robot to perform the task and uses
a joystick to set the degree of closure of the grippers. AR
tags, a type of visual fiducial, are used to track relevant pre-
determined task objects using combined visual and depth data
from a head-mounted RGB-D camera on the PR2.

During the ith demonstration, the pose information Xi =
(xi,1, . . . , xi,τi) with xi,t ∈ SE(3)×SE(3)×R2 is recorded
for each time t at 10 Hz, consisting of the Cartesian pose of
the end effector plus gripper pose (1-D measure of openness)
for both arms. The active arm can be changed by pressing a
button on a joystick; the previously active arm becomes stiff,
the inactive arm becomes loose and ready for interaction, and
the arm switch event is recorded for later use. Additionally,
a filtered estimate of the last observed Cartesian pose of all
n task objects Oi = (oi,1,1, . . . , oi,n,τi), with oi,j,t ∈ SE(3)
recorded for each object j at each time step t. At the beginning

Fig. 2. A kinesthetic demonstration of the table assembly task.

of the task, if not all relevant task objects are visible, the robot
will prohibit the demonstration from starting and look around
until an initial pose is known for all n objects.

After a set of m demonstrations (X1, O1), . . . , (Xm, Om)
of the task have been collected in various configurations,
the robot pose information X1, . . . , Xm can be segmented
and labeled by the BP-AR-HMM using the same procedure
and parameters as Niekum et al. [13]. However, this is done
separately for data that comes from each arm, forcing segment
breaks in locations where the active arm is switched and
creates a separate library of motion categories for each arm.

The segmentation process provides a set of segment
lists S1, . . . , Sn, such that Si = (si,1, . . . , si,qi) and
concat(si,1, . . . , si,qi) = Xi. Additionally, segmentation re-
turns corresponding label vectors L1, . . . , Lm, such that
Li = (li,1, . . . , li,qi), where li,j ∈ Z is a label for the
jth segment in Si, si,j . Each integer label corresponds to
a unique motion category discovered by the BP-AR-HMM
segmentation that is parameterized as a VAR process. Finally,
the clustering method described in Niekum et al. [13] is
used to automatically discover coordinate frame assignment
lists A1, . . . , An with Ai = (ai,1, . . . , ai,qi) and ai,j ∈
{‘object 1’, . . . , ‘object n’, ‘torso’, ‘none’}.

B. FSA construction

Defining the set L∗ as the union of all the unique labels from
the segment label vectors L1, . . . , Lm, a finite-state automaton
that represents the task can begin to be constructed by creating
nodes1 N1, . . . , Nu, with corresponding labels L∗

1, . . . , L
∗
u,

where u = |L∗|. For k ∈ {1, . . . , u}, each node Nk is assigned
a set Ek of all exemplars si,j that have the same label as
Nk, and the label of the previous and next segments is also
recorded (or START or END if there is no previous or next
segment), which we denote as prev(s) and next(s). A u× u
transition matrix T can then be constructed, where each entry
Ta,b is set to 1 if there exists a directed transition from Na
to Nb, and 0 otherwise. This matrix is initialized using the
sequence data, such that:

Ta,b = 1⇔ ∃i, j | (si,j = L∗
a) ∧ (si,j+1 = L∗

b).

Once this baseline FSA is constructed, nodes can be split
by looking for differences amongst groupings of exemplars,
based on the label of the segment that preceded the exemplar in

1The term ‘node’ is used rather than ‘state’ to avoid confusing it with the
current observation or state of the robot.

the observed execution; in other words, separating exemplars
based on groupings of the node’s parents in the FSA. For each
node Nk with more than one parent, each possible split of the
parents into two disjoint sets, Pin and Pout is examined, with
associated exemplar sets Ein and Eout, and descendant sets
Din and Dout such that:

Ein := {e : e ∈ Ek | prev(e) ∈ Pin}
Eout := {e : e ∈ Ek | prev(e) ∈ Pout}
Din := {next(e) : e ∈ Ein}
Dout := {next(e) : e ∈ Eout}

Three criteria are then used to determine if the node should
be split into two: (a) if the unique set of coordinate frame
assignments corresponding to the exemplars in Ein is disjoint
from that of Eout, (b) if the unique set of next segment
labels (the next(e)) corresponding to the exemplars in Ein
is disjoint from that of Eout, and (c) if the segment lengths
of the exemplars in Ein come from a significantly different
distribution than those in Eout. The difference in the length
distributions is tested using the Kolmogorov-Smirnov test [11]
as follows. Let Fin and Fout be the empirical cumulative
distribution functions of the lengths of the exemplars in Ein
and Eout. The test statistic z is then calculated based on
the maximum distance between the empirical CDFs, without
making any assumptions about the distributions involved:

G = sup
x
|Fin(x)− Fout(x)|

z = G

√
|Ein| |Eout|
|Ein|+ |Eout|

.

This suggests the node should be split if z < Kα, the critical
value for significance value α. Here, α = 0.05 is used.

If any of the three tests indicate to split the node, the node
Nk is deleted and two new nodes Nk−A and Nk−B are created
with exemplars Ek−A and Ek−B , such that:

Tp,Nk−A
= 1⇔ p ∈ Pin

Tp,Nk−A
= 1⇔ p ∈ Pout

TNk−B ,d = 1⇔ d ∈ Din

TNk−B ,d = 1⇔ d ∈ Dout

Ek−A := Ein

Ek−B := Eout

This process of semantic splitting is then repeated, iterating
over all the nodes until no more splits can be made.

(a) Demonstrations only,
before semantic splitting

(b) Demonstrations only, after
semantic splitting

(c) Demonstrations + interactive
corrections, before semantic splitting

(d) Demonstrations + interactive
corrections, after semantic splitting

Fig. 3. FSA structures before and after semantic splitting. Nodes are labeled with the relevant arm (left/right), ID numbers, and A’s and B’s to denote splits.

Once the structure of the FSA is finalized, then a classifier
is trained for each node that has multiple descendants. This
is used as a transition classifier to determine which node to
transition to next, once execution of a primitive at that node has
taken place. For this task, a nearest neighbor classifier is used,
but could be replaced by any multi-class classifier. For each
classifier Ck corresponding to node Nk, training examples
Yk = (yk,1, . . . , yk,rk) are provided, corresponding to the final
observation of the robot pose and object poses during each
exemplar, plus a class label corresponding to the label of the
node the given exemplar transitioned to next. Thus, training
examples are recorded as y ∈ SE(3)1×· · ·×SE(3)n+2×R2,
where n is the number of task objects. One exception to the
above rule is the START node, which has no data associated
with it; for this, the first observation of the first segment of
the demonstration is used as training data.

Each classifier Ck is then trained using the training ex-
amples Yk, along with their appropriate class labels. Once
the classifier has been trained, future observations y can be
classified so that appropriate transitions can be made at each
decision point.

C. Task replay

Given a novel situation, the FSA can be used to replay the
task by beginning at the START node that has no exemplars
associated with it. The current observation is classified using
CSTART to determine which node to transition to first. This is
a standard node Ni that contains exemplars Ei. To execute
an appropriate movement, a DMP must be constructed from
the exemplars; a single exemplar is chosen by examining the
first observations associated with each exemplar and choosing
the nearest candidate to the current observation y. The chosen

exemplar is used to learn the weights for a DMP as described
in Section II-B.

To execute the DMP, the goal is shifted based on the
coordinate frame that the segment was assigned to, so that
the relative 6-DOF offset of the goal from the current origin
of the coordinate frame is the same as it was in the exemplar.
Then, the current robot pose is given as a starting state and the
DMP is used to generate a movement plan to the goal with a
resolution of 0.1 seconds. The plan is then executed, followed
by a transition dictated by the node’s transition classifier, using
the current observation as input. This process is repeated until
the END node is reached, a timeout occurs, or the robot is
manually stopped by the user.

D. Interactive corrections

At any time during execution, the user can push a button on
the joystick to stop the robot so that an interactive correction
can be made. The robot immediately stops execution of the
current movement and switches modes to accept a kinesthetic
demonstration from the user. From the beginning of execution,
the robot has been recording pose data in case of an interactive
correction, and it continues to record as the user provides a
demonstration of the remainder of the task.

After any number of replays and interactive corrections have
taken place, the corrections can be integrated with the existing
data for improved performance. All the old data plus the inter-
active corrections are segmented from scratch; we do not begin
with the old burned-in BP-AR-HMM, because the addition of
new data may require a significantly different segmentation,
and we wish to avoid biasing the sampling process. Finally, the
FSA is reconstructed with the new segmentations, providing
additional exemplars and refining the structure of the FSA.

Fig. 4. A recovery behavior when the robot misses the original grasp.

Fig. 5. A recovery behavior when the table leg is too far away to grasp at the desired location.

V. EXPERIMENTS

A. Experiment 1: demonstrations, corrections, and replay
We evaluated our system on a furniture assembly task,

using a PR2 mobile manipulator to partially assemble a small
off-the-shelf table2. The table consists of a tabletop with
four pre-drilled holes and four legs that each have a screw
protruding from one end. Eight kinesthetic demonstrations of
the assembly task were provided, in which the tabletop and
one leg were placed in front of the robot in various positions.
In each demonstration, the robot was made to pick up the leg,
insert the screw-end into the hole in the tabletop, switch arms
to grasp the top of the leg, hold the tabletop in place, and screw
in the leg until it is tight. An example of this progression is
shown in Figure 2.

The demonstrations were then segmented and an FSA
was built as described in Section IV. Figures 3(a)–(b) show
the structure of the FSA before and after semantic splitting
occurred; it can be seen that the node splits yield a much
simpler, linear structure that better characterizes the flow of
task progress, while leaving room for branching when neces-
sary. At this stage, task replay was sometimes successful, but
several types of errors occurred intermittently. Two particular
types of errors that occurred were (a) when the table leg was
at certain angles, the robot was prone to missing the grasp, and
(b) when the leg was too far from the robot, it could not reach
far enough to grasp the leg at the desired point near the center
of mass. In both cases interactive corrections were provided to
recover from these contingencies. In the first case, a re-grasp
was demonstrated, and then the task was continued as usual.
In the second case, the robot was shown how to grasp the leg
at a closer point, pull it towards itself, and then re-grasp it at
the desired location.

After the interactive corrections were collected, the old data
was re-segmented with the two new corrections and used to re-
build the FSA. Figures 3(c)–(d) show the structure of the FSA

2Ikea LACK table: http://www.ikea.com/us/en/catalog/products/20011413/

before and after semantic splitting occurred. After splitting,
this FSA is similar to that of Figure 3(b), but with several
branching pathways near the beginning that then bottleneck
into a linear flow. This is exactly the sort of structure that
would be expected, given the nature of the corrections—the
robot attempts a grasp, chooses a path based on the outcome
of the grasp, and then once the leg is successfully picked up
and ready to be inserted, all paths converge on a common
(nearly) linear sequence for the rest of the task.

Using this new FSA, the robot was able to recover from two
types of errors in novel situations. Figure 4 shows a successful
recovery from a missed grasp, while Figure 5 shows the robot
bringing the table leg closer for a re-grasp when it is too far
away. Finally, Figure 6 shows a full successful execution of
the task without human intervention, demonstrating that these
error recovery capabilities did not interfere in cases where no
contingencies were encountered.

B. Experiment 2: method comparisons

The table in Figure 7 shows a quantitative comparison
that demonstrates the benefits of FSA-based sequencing and
interactive corrections. Ten trials of the table assembly task
were attempted using four different sequencing methods with
the segmented demonstration data from Experiment 1. The
first method (‘ASM’) used a framework similar to that of
Associative Skill Memories by Pastor et al. [16], in which all
primitives were available to be chosen at every decision point;
classification was performed via a nearest neighbor classifier
over the first observations of the exemplars associated with
each movement category. The second (‘FSA-basic’) and third
(‘FSA-split’) methods used an FSA before and after semantic
splitting, respectively. Finally, the fourth method(‘FSA-IC’)
used an FSA after splitting with interactive corrections (also
from Experiment 1) integrated as well.

Each set of ten trials was split up into three groups: four
trials in which the table leg was straight and close to the
PR2 (‘Straight’), three trials in which the leg was too far

http://www.ikea.com/us/en/catalog/products/20011413/

Fig. 6. A full successful execution of the task without any human intervention.

away to grasp at the center of balance (‘Far away’), and three
trials in which the leg was at a difficult angle that could
cause a missed grasp (‘Difficult angle’). These were all novel
configurations that had not been seen before, but the latter two
were designed to produce situations similar to the interactive
corrections collected earlier. During each trial, the operator
was allowed to provide small assists to help the robot by
moving an object or the robot’s end effector by a maximum
of 5 cm to compensate for minor perceptual or generalization
errors. The entries in the table in Figure 7 denote the number
of assists that were required during each trial, or ‘Fail’ if
the robot failed to complete the task successfully. Here, we
defined success as screwing the leg in far enough so that it
was freestanding when the robot released it.

All ten trials with the ‘ASM’ and ‘FSA-basic’ methods
resulted in failure, but for different reasons. While the ASM
provided maximum sequencing flexibility, it also inherently
made the classification problem difficult, since all choices were
available at every step. Indeed, most failures were caused by
misclassifications that caused the robot to choose inappropriate
primitives or get stuck in an infinite loop, repeating the
same primitive indefinitely. The FSA avoided infinite loops
by reducing the number of choices at each decision point
and providing ordering constraints between the nodes. How-
ever, it still frequently chose poor exemplars or inappropriate
primitives. Without semantic splitting, several semantically
different primitives often got combined into a single node,
corrupting the structure of the FSA, and making classification
and exemplar selection more difficult.

Using semantic splitting, we observed seven successes and
a modest number of required assists with the ‘FSA-split’
method, failing only in the ‘Far away’ case. In these cases,
the robot reached for the leg until its arm was fully extended,
but stopped far short of the intended grasp point; the difference
was far too large to be fixed with a small assist. Once
interactive corrections were added in ‘FSA-IC’, the number of
successes increased to nine and the number of required assists
dropped by more than 25%—a significant improvement. The
remaining assists were largely due to small perceptual errors
during the screw insertion, which requires a high level of
precision. These errors appeared to be random, lacking struc-
ture that could be leveraged; additional interactive corrections
were provided, but did not further improve performance. This
reveals an important limitation of interactive corrections—in
general, they can only be used to recover from observable,
structured errors.

ASM FSA-basic FSA-split FSA-IC

Straight

Fail Fail 1 0
Fail Fail 1 2
Fail Fail 2 2
Fail Fail 1 2

Far away
Fail Fail Fail 1
Fail Fail Fail 1
Fail Fail Fail Fail

Difficult angle
Fail Fail 2 1
Fail Fail 3 1
Fail Fail 3 2

Successes /
Avg assists 0 / – 0 / – 7 / 1.857 9 / 1.333

Fig. 7. Ten trials of the task with corresponding performance data for four
different types of sequencing. ‘Fail’ indicates failure and integer values corre-
spond to the number of human assists required during successful executions.

VI. RELATED WORK

The most closely related work to ours is that of Grollman
et al. [7], which addresses perceptual aliasing by using a
nonparametric Bayesian model to infer a mixture of experts
from unsegmented demonstration data and then using multi-
map regression to assign observed states to experts. Butterfield
et al. [3] extend this work by getting rid of the assumption
that data is independent and identically distributed, leading to
policies that better model the time-series nature of tasks.

Other work aims to intelligently sequence predefined prim-
itives, rather than discover them from data. Toussaint et al.
[20] use heuristics to translate perceptions into predefined
symbols, which are then used by a rule-based planner. In the
control basis framework [8], a graph of admissible behaviors
is automatically built based on the predicates and constraints
of multiple hand-crafted controllers, allowing safe composite
policies to be learned. Given a set of predefined skills, Riano
et al. [17] evolve the structure of a finite-state automaton that
defines transition behavior between the skills. Pastor et al. [16]
demonstrate one skill at a time and then use nearest neighbor
classification to associate skills with observations, while also
monitoring skill executions for proprioceptive anomalies so
that recovery behaviors can be initiated. Wilcox et al. [21]
use a dynamic scheduling algorithm to adapt execution of a
predefined set of events to a user’s preferences and temporal
disruptions, while maintaining critical synchronization invari-
ants. Ekvall and Kragic [4] search for skill ordering constraints
in tasks with many valid execution orderings.

Several other approaches also allow users to interactively

provide additional data and corrections to a robot. Thomaz
and Breazeal [19] provide an interface that allows users to
bias the robot’s exploration and provide positive and negative
feedback during task execution. Another approach uses user-
defined keyframes that identify critical points in a task that
must be reproduced [1]. Upon replay, the teacher can use
an interface to view and edit keyframes to fine-tune task
performance. Muhlig et al. [12] rely entirely on real-time
human-robot interaction to ensure proper sequencing of skills
and recovery from errors, using hand signals and speech to
control skill flow, halt execution, and identify task objects.

VII. CONCLUSION

Flexible discovery and sequencing of primitives is essential
for tractable learning of complex robotic tasks from demon-
stration. We introduced a novel method to split automati-
cally discovered motion categories into semantically grounded
primitives, sequence them intelligently, and provide interac-
tive corrections for incremental performance improvement.
Sequencing primitives with a finite-state automaton allows
exemplars of movement primitives to be grouped together in a
semantically meaningful way that attempts to maximize data
reuse, while minimizing the number of options that the agent
must choose amongst at each step. This approach makes the
sequencing classification task easier, while also providing a
mechanism for semantically grounding each primitive based
on state visitation history and observed characteristics like
coordinate frame, length, and successor state.

This approach was validated on a furniture assembly task
using a PR2 robot. It was shown that the robot could learn the
basic structure of the task from a small number of demonstra-
tions, which were supplemented with interactive corrections as
the robot encountered contingencies that would have lead to
failure. The corrections were then used to refine the structure
of the FSA, leading to new recovery behaviors when these
contingencies were encountered again, without disrupting per-
formance in the nominal case. A quantitative measure was
also provided, showing that an FSA with semantic splitting
provides advantages that lead to improved classification and
task performance compared to more naive methods.

While performance was able to be improved through in-
teractive corrections, future work could include a mechanism
to improve task performance and individual primitives au-
tomatically though self-practice. Additionally, we only took
advantage of the multiple exemplars of each primitive by
selecting amongst them; in the future, it would be beneficial to
integrate the exemplars to better model the user’s intentions.
Finally, only vision and pose data were used as part of the
discriminative state space, but several other types of input
such as force data could be valuable for decision making,
or even for modulating our DMPs, as in [15]. With such
improvements, the presented method might function as one
element of a deployable system that allows researchers and
end users alike to efficiently program robots via unsegmented,
natural demonstrations.

VIII. ACKNOWLEDGEMENTS

Scott Niekum, Sarah Osentoski, and Andrew G. Barto were
funded in part by the NSF under grant IIS-1208497.

REFERENCES
[1] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories

and keyframes for kinesthetic teaching : A human-robot interaction
perspective. International Conference on Human-Robot Interaction,
2012.

[2] B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):
469–483, 2009.

[3] J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins. Learning from
demonstration using a multi-valued function regressor for time-series
data. In Proceedings of the Tenth IEEE-RAS International Conference
on Humanoid Robots, 2010.

[4] S. Ekvall and D. Kragic. Learning task models from multiple human
demonstrations. In 15th IEEE International Symposium on Robot and
Human Interactive Communication, pages 358–363, 2006.

[5] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Sharing features among
dynamical systems with beta processes. Advances in Neural Information
Processing Systems 22, pages 549–557, 2009.

[6] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Joint modeling of
multiple related time series via the beta process. arXiv:1111.4226, 2011.

[7] D. H. Grollman and O. C. Jenkins. Incremental learning of subtasks
from unsegmented demonstration. IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 261–266, 2010.

[8] M. Huber and R. A. Grupen. Learning to coordinate controllers -
reinforcement learning on a control basis. In Proceedings of the
International Joint Conference on Artificial Intelligence, pages 1366–
1371, 1997.

[9] A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. Advances in Neural Information Processing
Systems 16, pages 1547–1554, 2003.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto. Robot learning
from demonstration by constructing skill trees. The International
Journal of Robotics Research, 31(3):360–375, 2012.

[11] F. J. J. Massey. The kolmogorov-smirnov test for goodness of fit. Journal
of the American Statistical Association, 46(253):68–78, 1951.

[12] M. Mühlig, M. Gienger, and J. J. Steil. Interactive imitation learning of
object movement skills. Autonomous Robots, 32(2):97–114, 2011.

[13] S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto. Learning
and generalization of complex tasks from unstructured demonstrations.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5239–5246, 2012.

[14] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and
generalization of motor skills by learning from demonstration. In IEEE
International Conference on Robotics and Automation, pages 763–768.
IEEE, 2009.

[15] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal. Online movement
adaptation based on previous sensor experiences. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 365–371,
2011.

[16] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards
associative skill memories. IEEE-RAS International Conference on
Humanoid Robots, 2012.

[17] L. Riano and T. McGinnity. Automatically composing and parameteriz-
ing skills by evolving finite state automata. Robotics and Autonomous
Systems, 60(4):639–650, 2012.

[18] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement
primitives. International Symposium on Robotics Research, pages 561–
572, 2004.

[19] A. L. Thomaz and C. Breazeal. Reinforcement learning with human
teachers: evidence of feedback and guidance with implications for
learning performance. In Proceedings of the 21st national conference
on Artificial intelligence, pages 1000–1005, 2006.

[20] M. Toussaint, N. Plath, T. Lang, and N. Jetchev. Integrated motor con-
trol, planning, grasping and high-level reasoning in a blocks world using
probabilistic inference. IEEE International Conference on Robotics and
Automation, pages 385–391, 2010.

[21] R. Wilcox, S. Nikolaidis, and J. Shah. Optimization of temporal dynam-
ics for adaptive human-robot interaction in assembly manufacturing. In
Proceedings of Robotics: Science and Systems, 2012.

	Introduction
	Background
	Beta Process Autoregressive Hidden Markov Model
	Dynamic Movement Primitives

	Constructing Finite-State Task Representations
	Methodology
	Demonstrations and segmentation
	FSA construction
	Task replay
	Interactive corrections

	Experiments
	Experiment 1: demonstrations, corrections, and replay
	Experiment 2: method comparisons

	Related Work
	Conclusion
	Acknowledgements

