
CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

Adversarial imitation learning

Final project proposals
• Can work with up to 2 other people

• Example projects could include: extending an algorithm in a novel way; comparing several algorithms on
an interesting problem; designing a new approach to attack a problem relevant to the class.

• In all cases, there should be a novel intellectual contribution, as well as empirical results on a problem of
interest.

• Writeup should include:

• A clear description of the problem you are investigating, both abstractly and in context of a particular
experimental domain

• References to a few papers that are relevant to the subject of interest

• A proposed plan to address your problem, which should outline what method(s) you plan to develop,
implement, compare, or extend (and how)

• A testable hypothesis

• An experiment to test your hypothesis and a clear evaluation criteria to determine the outcome of your
experiment / hypothesis

IRL problems so far

• RL in the inner loop

• Overfitting to noisy estimates of expert feature counts or (s,a) occupancies

• Doesn’t scale to large problems: restricted to linear rewards with carefully designed features

• Indirect - if we want to match expert, why can’t we just learn a policy directly?

A generalized view of IRL

Regularizer Expert

performance

Entropy-regularized

RL

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation
learning." Advances in neural information processing systems 29 (2016).

 ⇤(y) = supx2RS⇥Ax>y � (x)
<latexit sha1_base64="ApE0kaWebCRJL2eLIfcfNmYu17o=">AAACNXicbVDLThsxFPWkPNLwCu2yG4sIKUEimqGVYIOUlk0XLHgFImWSyOM4YOHxWPYdlJE1P9VN/6MruuiiCLHlF/CELCBwJEtH59yH74mU4AZ8/69X+jA3v7BY/lhZWl5ZXauufzo3Saopa9NEJLoTEcMEl6wNHATrKM1IHAl2EV0fFP7FDdOGJ/IMMsV6MbmUfMQpAScNqoehMry/Vc8aeB+HwMagY2tSlQ/sGIdc4jAmcBVF9iTv21NXwWNm8Pc8x+O+DSFReYa3cTGkPm4MqjW/6U+A35JgSmpoiqNB9U84TGgaMwlUEGO6ga+gZ4kGTgXLK2FqmCL0mlyyrqOSuOU9O7k6x5tOGeJRot2TgCfqyw5LYmOyOHKVxQ1m1ivE97xuCqO9nuVSpcAkfV40SgWGBBcR4iHXjILIHCFUc/dXTK+IJhRc0BUXQjB78ltyvtMMvjZ3jr/VWj+mcZTRF7SB6ihAu6iFfqIj1EYU/UK36D+68357/7x77+G5tORNez6jV/AenwCwC6tg</latexit>

Detour: convex conjugates

f(x)slope = y

f*(y)

Economic view:
If it costs f(x) to make x widgets and I

can sell them for y each, then f*(y) is the

max profit I can make

f⇤(y) = sup
x

xy � f(x)
<latexit sha1_base64="2F78L8/9kaln2JBBe/aG8bOmhJk=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEVrAkVdCNUHTjsoJ9QBvDZDpph04mYWYiDaG48VfcuFDErV/hzr9x2mah1QMXDufcy733eBGjUlnWl5FbWFxaXsmvFtbWNza3zO2dpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS84dXEb90TIWnIb1USESdAfU59ipHSkmvu+XdHpaQML2BXxpE7gqMEHkO/NCq7ZtGqWFPAv8TOSBFkqLvmZ7cX4jggXGGGpOzYVqScFAlFMSPjQjeWJEJ4iPqkoylHAZFOOn1hDA+10oN+KHRxBafqz4kUBVImgac7A6QGct6biP95nVj5505KeRQrwvFskR8zqEI4yQP2qCBYsUQThAXVt0I8QAJhpVMr6BDs+Zf/kma1Yp9UqjenxdplFkce7IMDUAI2OAM1cA3qoAEweABP4AW8Go/Gs/FmvM9ac0Y2swt+wfj4Br3PlRY=</latexit>

ML view:
If I have a regularizer f(x) and utility function

uy(x) = xy, then f*(y) tells me the value of the

best regularized utility I can achieve by

choosing the best “weight” x for a fixed y:

f*(y) = supx uy(x) - f(x)

Detour: convex conjugates

f*(y)

Economic view:
If it costs f(x) to make x widgets and I

can sell them for y each, then f*(y) is the

max profit I can make

f⇤(y) = sup
x

xy � f(x)
<latexit sha1_base64="2F78L8/9kaln2JBBe/aG8bOmhJk=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEVrAkVdCNUHTjsoJ9QBvDZDpph04mYWYiDaG48VfcuFDErV/hzr9x2mah1QMXDufcy733eBGjUlnWl5FbWFxaXsmvFtbWNza3zO2dpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS84dXEb90TIWnIb1USESdAfU59ipHSkmvu+XdHpaQML2BXxpE7gqMEHkO/NCq7ZtGqWFPAv8TOSBFkqLvmZ7cX4jggXGGGpOzYVqScFAlFMSPjQjeWJEJ4iPqkoylHAZFOOn1hDA+10oN+KHRxBafqz4kUBVImgac7A6QGct6biP95nVj5505KeRQrwvFskR8zqEI4yQP2qCBYsUQThAXVt0I8QAJhpVMr6BDs+Zf/kma1Yp9UqjenxdplFkce7IMDUAI2OAM1cA3qoAEweABP4AW8Go/Gs/FmvM9ac0Y2swt+wfj4Br3PlRY=</latexit>

f(x)slope = y

ML view:
If I have a regularizer f(x) and utility function

uy(x) = xy, then f*(y) tells me the value of the

best regularized utility I can achieve by

choosing the best “weight” x for a fixed y:

f*(y) = supx uy(x) - f(x)

Detour: convex conjugates

f*(y)

Economic view:
If it costs f(x) to make x widgets and I

can sell them for y each, then f*(y) is the

max profit I can make

f⇤(y) = sup
x

xy � f(x)
<latexit sha1_base64="2F78L8/9kaln2JBBe/aG8bOmhJk=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEVrAkVdCNUHTjsoJ9QBvDZDpph04mYWYiDaG48VfcuFDErV/hzr9x2mah1QMXDufcy733eBGjUlnWl5FbWFxaXsmvFtbWNza3zO2dpgxjgUkDhywUbQ9JwignDUUVI+1IEBR4jLS84dXEb90TIWnIb1USESdAfU59ipHSkmvu+XdHpaQML2BXxpE7gqMEHkO/NCq7ZtGqWFPAv8TOSBFkqLvmZ7cX4jggXGGGpOzYVqScFAlFMSPjQjeWJEJ4iPqkoylHAZFOOn1hDA+10oN+KHRxBafqz4kUBVImgac7A6QGct6biP95nVj5505KeRQrwvFskR8zqEI4yQP2qCBYsUQThAXVt0I8QAJhpVMr6BDs+Zf/kma1Yp9UqjenxdplFkce7IMDUAI2OAM1cA3qoAEweABP4AW8Go/Gs/FmvM9ac0Y2swt+wfj4Br3PlRY=</latexit>

f(x)slope = y

(Negative) ML view:
If I have a regularizer f(x) and cost function

cy(x) = xy, then f*(y) tells me the value of the

largest regularized cost an adversary can force

by choosing the worst “weight” x for a fixed y:

f*(y) = supx cy(x) - f(x)

A generalized view of IRL

Regularizer Expert

performance

Entropy-regularized

RL

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation
learning." Advances in neural information processing systems 29 (2016).

 ⇤(y) = supx2RS⇥Ax>y � (x)
<latexit sha1_base64="ApE0kaWebCRJL2eLIfcfNmYu17o=">AAACNXicbVDLThsxFPWkPNLwCu2yG4sIKUEimqGVYIOUlk0XLHgFImWSyOM4YOHxWPYdlJE1P9VN/6MruuiiCLHlF/CELCBwJEtH59yH74mU4AZ8/69X+jA3v7BY/lhZWl5ZXauufzo3Saopa9NEJLoTEcMEl6wNHATrKM1IHAl2EV0fFP7FDdOGJ/IMMsV6MbmUfMQpAScNqoehMry/Vc8aeB+HwMagY2tSlQ/sGIdc4jAmcBVF9iTv21NXwWNm8Pc8x+O+DSFReYa3cTGkPm4MqjW/6U+A35JgSmpoiqNB9U84TGgaMwlUEGO6ga+gZ4kGTgXLK2FqmCL0mlyyrqOSuOU9O7k6x5tOGeJRot2TgCfqyw5LYmOyOHKVxQ1m1ivE97xuCqO9nuVSpcAkfV40SgWGBBcR4iHXjILIHCFUc/dXTK+IJhRc0BUXQjB78ltyvtMMvjZ3jr/VWj+mcZTRF7SB6ihAu6iFfqIj1EYU/UK36D+68357/7x77+G5tORNez6jV/AenwCwC6tg</latexit>

A dual optimization view of non-regularized RL+IRL

Regularized occupancy matching

…but apprenticeship learning (Abbeel and Ng 2004) surprisingly already regularizes:

for function class

Define: then:

So what’s the problem?

The problem with apprenticeship learning

• If expert’s true reward function isn’t in the representable class, then we can get poor
performance!

• Just because learned policy looks as good as expert on a restricted set of cost functions, doesn’t
mean we’ve learned the expert policy. Not smooth regularization — very sharp, in fact.

• Thus, requires very careful feature design

• Can we do better?

GAIL

Where:

GAIL objective:

GAIL

Reward/dynamics entanglement

Two types of ambiguity in IRL:

(1) Many different policies explain demonstration data (MaxEnt rectifies this)

(2) Many different reward functions explain any given policy
- Some of those reward functions may be sparse; some may be heavily shaped
- Of the shaped reward functions, some may have shaping entangled with dynamics
- Bad if dynamics change at test time!

Reward/dynamics entanglement

A D

C

B
+1

0

-1

a1, 0

a2, 0

Sparse / ground truth

A D

C

B
+1

-1

+1a1, +1

a2, -1

Shaped + dynamics entangled

A D

C

B

Dynamics

a1

a2

A D

B

C
+1

0

-1a1, 0

a2, 0

Sparse / ground truth

A D

B

C
+1

-1

+1

a1, +1

a2, -1

Shaped + dynamics entangled

A D

B

C

Dynamics shift!

a1

a2

Reward/dynamics entanglement

Fu, Justin, Katie Luo, and Sergey Levine. "Learning robust rewards with adversarial
inverse reinforcement learning." arXiv preprint arXiv:1710.11248 (2017).

Potential-based reward shaping (Ng et al. 1999)

Assume we have a reward function of the following form for MDP M with deterministic dynamics T:

But then then the MDP changes to M’ with dynamics T’, where T’(s,a) =/= T(s,a)

no longer guaranteed to lead to optimal policies in M’ (as judged under r(s,a))

Disentangled rewards

Disentangled rewards

