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Adversarial imitation learning



Final project proposals
• Can work with up to 2 other people

• Example projects could include: extending an algorithm in a novel way; comparing several algorithms on 
an interesting problem; designing a new approach to attack a problem relevant to the class. 

• In all cases, there should be a novel intellectual contribution, as well as empirical results on a problem of 
interest.

• Writeup should include:

• A clear description of the problem you are investigating, both abstractly and in context of a particular 
experimental domain

• References to a few papers that are relevant to the subject of interest

• A proposed plan to address your problem, which should outline what method(s) you plan to develop, 
implement, compare, or extend (and how)

• A testable hypothesis

• An experiment to test your hypothesis and a clear evaluation criteria to determine the outcome of your 
experiment / hypothesis



IRL problems so far

• RL in the inner loop


• Overfitting to noisy estimates of expert feature counts or (s,a) occupancies


• Doesn’t scale to large problems: restricted to linear rewards with carefully designed features


• Indirect - if we want to match expert, why can’t we just learn a policy directly?



A generalized view of IRL

Regularizer Expert 

performance

Entropy-regularized

RL

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation 
learning." Advances in neural information processing systems 29 (2016).
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Detour: convex conjugates

f(x)slope = y

f*(y)

Economic view: 
If it costs f(x) to make x widgets and I 

can sell them for y each, then f*(y) is the 

max profit I can make

f⇤(y) = sup
x

xy � f(x)
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ML view: 
If I have a regularizer f(x) and utility function

uy(x) = xy, then f*(y) tells me the value of the

best regularized utility I can achieve by 

choosing the best “weight” x for a fixed y: 

f*(y) = supx uy(x) - f(x)



Detour: convex conjugates

f*(y)

Economic view: 
If it costs f(x) to make x widgets and I 

can sell them for y each, then f*(y) is the 

max profit I can make

f⇤(y) = sup
x

xy � f(x)
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f(x)slope = y

ML view: 
If I have a regularizer f(x) and utility function

uy(x) = xy, then f*(y) tells me the value of the

best regularized utility I can achieve by 

choosing the best “weight” x for a fixed y: 

f*(y) = supx uy(x) - f(x)



Detour: convex conjugates

f*(y)

Economic view: 
If it costs f(x) to make x widgets and I 

can sell them for y each, then f*(y) is the 

max profit I can make

f⇤(y) = sup
x

xy � f(x)
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f(x)slope = y

(Negative) ML view: 
If I have a regularizer f(x) and cost function

cy(x) = xy, then f*(y) tells me the value of the

largest regularized cost an adversary can force

by choosing the worst “weight” x for a fixed y: 

f*(y) = supx cy(x) - f(x)



A generalized view of IRL

Regularizer Expert 

performance

Entropy-regularized

RL

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation 
learning." Advances in neural information processing systems 29 (2016).
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A dual optimization view of non-regularized RL+IRL



Regularized occupancy matching

…but apprenticeship learning (Abbeel and Ng 2004) surprisingly already regularizes:

for function class

Define: then:

So what’s the problem?



The problem with apprenticeship learning

• If expert’s true reward function isn’t in the representable class, then we can get poor 
performance!


• Just because learned policy looks as good as expert on a restricted set of cost functions, doesn’t 
mean we’ve learned the expert policy. Not smooth regularization — very sharp, in fact.


• Thus, requires very careful feature design


• Can we do better?



GAIL

Where:

GAIL objective:



GAIL



Reward/dynamics entanglement

Two types of ambiguity in IRL:

(1) Many different policies explain demonstration data (MaxEnt rectifies this)


(2) Many different reward functions explain any given policy
- Some of those reward functions may be sparse; some may be heavily shaped
- Of the shaped reward functions, some may have shaping entangled with dynamics
- Bad if dynamics change at test time!



Reward/dynamics entanglement
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Reward/dynamics entanglement

Fu, Justin, Katie Luo, and Sergey Levine. "Learning robust rewards with adversarial 
inverse reinforcement learning." arXiv preprint arXiv:1710.11248 (2017).

Potential-based reward shaping (Ng et al. 1999)

Assume we have a reward function of the following form for MDP M with deterministic dynamics T:

But then then the MDP changes to M’ with dynamics T’, where T’(s,a) =/= T(s,a)

no longer guaranteed to lead to optimal policies in M’ (as judged under r(s,a))



Disentangled rewards



Disentangled rewards


