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Prof. Scott Niekum

Bayesian inverse reinforcement learning and safe IRL



What does it mean for a learning agent to be “safe’?

Formal safety: A self-driving car that will provably never crash it some model holds
Risk-sensitive safety: A stock market agent with bounded value-at-risk

Robust safety: An image classifier resistant to data poisoning or adversarial examples
Monotonic safety: An RL-based advertising policy that always improves with high probability

Safe exploration: A walking robot that can explore new gaits without falling over

More complete taxonomy: D.Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané.
"Concrete problems in Al safety."



A proposed definition of safety:
Safety = Correctness + Confidence

Correctness: Meeting or exceeding a measure of performance

Confidence: A (probabilistic) guarantee of correctness



A spectrum of safety for policy learning

Guaranteed Probabilistic

e ————————————

Require perfect models Sample inefficient

Verification / synthesis PAC-M

DP methods

[Kress-Gazit et. al 2009] [Singh et. al 2002]
[Raman et. al 2015] [Fu and Topcu 2014]

Concentration inequalrties

[Thomas et. al 2015]
[Bottou et. al 201 3]
[Abbeel and Ng 2004]
[Syed and Schapire 2008]

Heuristic

No guarantees

KL-divergence constraints

[Schulman et. al 201 5]
[Achiam et. al 2017]

Need to address bad
assumptions for efficiency



Safe Imitation Learning:

Upper bound the policy loss of the robot vs. human demonstrator with
high confidence, without knowing the ground-truth reward function.
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Reward Functions




Inverse reinforcement learning: feature matching
(Abbeel and Ng 2004)
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Policy value under linear reward function: Es,~p[V"(s0)]

(Discounted) feature expectations: uw(m) = E[Y o2 a7y o(se)|m] € RE.

Goal: find a reward function whose optimal
policy matches expert’s feature expectations

If expert’s feature expectations are matched,
then total return is also identical




Hoeffding-style bound (w.r.t. projection IRL algorithm)
(Abbeel and Ng 2004, Syed and Schapire 2008)

Theorem 2. (Syed and Schapire 2008) To obtain a policy T such
that with probability (1 — 0)

e>|VF(R*) = V™ (RY) (26)

it suffices to have

m > 2 log %

= G- .




Assumption:

Worst-case reasoning is the best we can do if we don't
know the ground-truth reward function

!

It is much more efficient to consider the likelihood of
reward functions when assessing risk

D.S. Brown and S. Niekum. D.S. Brown, Y. Cui, and S. Niekum.
Efficient Probabilistic Performance Bounds for Inverse Reinforcement L.earning. Risk-Aware Active Inverse Reinforcement L.earning.

AAAI Conference on Artificial Intelligence, February 2018. Conference on Robot Learning (CoRL), October 2018.


https://arxiv.org/abs/1707.00724
http://www.cs.utexas.edu/users/sniekum/pubs/BrownCuiCORL2018.pdf

Rethinking feature expectations

Problem |: Hoeffding method bounds the features expectations,
which in turn, bounds loss under a worst-case reward function,
regardless of its likelihood given the demonstrations

Problem 2: Feature expectation methods cannot learn from
state-action pairs that aren’t part of a full trajectory



Bayesian Inverse Reinforcement Learning (BIRL)
[Ramachandran and Amir 200/]

* Use MCMC to sample from posterior:

P(R|D) « P(D|R)P(R)

* Assume demonstrations follow softmax policy with temperature c:
GCQ* (s,a,R)

P(D|R) = o
(s,g[eD D pea €9 (5,0, )
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Where should priors come from!?



Trajectory vs. action-based reasoning

P(action a|6,T) Z P((l0,T) Vs. P(action als;, 0) cQ7 (si,a)
GC:a€Ct=0
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Paths 1, 2, and 3 have equal return, so all should be p=1/3 under MaxEnt



Value at risk

vo(Z) = F,;'(a) = inf{z : Fz(2) > o}

Loss




Value at risk

vo(Z) = F;'(a) = inf{z : Fz(2) > a}

Loss

+

Single-sided confidence bound

“With probability 1 — §, no more than 1 — a% of the outcomes will be worse than X”

Goal: Solve for X and check if it is below acceptable risk level
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(Active) Safe IRL

Bayesian IRL \
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Plus a single-sided

Calculate Value at Risk
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Results: efficiency (no active learning)

Number of demonstrations Average Accuracy
1 5 0 ... 23,146
0.95-VaR EVD Bound 0.9372 0.2532 0.1328 - 0.98
0.99-VaR EVD Bound 1.1428 0.2937 0.1535 - 1.0
EVD Bound (Syed and Schapire 2008) 142.59 63.77  47.53 0.9372 1.0

Table 1: Comparison of 95% confidence a-VaR bounds with a 95% confidence Hoeffding-style bound (Syed and Schapire
2008). Both bounds use the Projection algorithm (Abbeel and Ng 2004) to obtain the evaluation policy. Results are averaged
over 200 random navigation tasks.

Four orders of magnitude more data efficient!



Risk-sensitive preferences

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

© ® Driving Task Simulation @ & Driving Task Simulation -~

Driving Task Simulation

.

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions
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Risk-sensitive preferences (feature count-based)

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Risk-sensitive preferences (our approach)

@ © Driving Task Simulation

Demonstration: avoids cars, no lane pref

(x f— Driving Task Simulation (x M — DriVing Task Simulation - Drlving Task Simulation

2 .

Avoids cars, but prefers right lane Stays on road, but ignores other cars Seeks collisions



Risk-sensitive policy search

Demo Min VaR policy MLE policy
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IEEE International Conference on Robotics and
Automation (ICRA), May 2018.
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Reward Functions


http://www.cs.utexas.edu/users/sniekum/pubs/CuiICRA2018.pdf

Aside: Is reward enough?

States b1 and b2 are bad: reward of -r

Desired: maximize the probability of reaching g without hitting a bad state
Always better to take action a2 — seems trivial to specify

Assume gamma = 0.8, assign a value of r to meet specification

p = 0.1 possible, but p = 0.3 impossible!

Littman, Michael L., et al. "Environment-independent task
specifications via GLTL." arXiv preprint arXiv:1704.04341 (2017).



