CS 690: Human-Centric Machine Learning

Prof. Scott Niekum

Inverse reinforcement learning

How to learn from human data?

Behavioral Cloning

- Quadratic regret in worst case; bad performance out of expert distribution
- Can't learn from additional data collected by the agent

DAgger / TAMER / COACH

- Provides data/feedback on-policy
- Still can't learn from additional data collected by the agent

Inverse reinforcement learning

Infers reward function from demonstrations so that RL can be used

Inverse reinforcement learning

Policy:
$$\pi(s,a) \to [0,1]$$

Value function:
$$V^{\pi}(s_0) = \sum_{t=0}^{\infty} \gamma^t R(s_t)$$

What if we have an MDP/R?

Inverse reinforcement learning

I. Collect user demonstration $(s_0, a_0), (s_1, a_1), \ldots, (s_n, a_n)$ and assume it is sampled from the expert's policy, π^E

2. Explain expert demos by finding R^* such that:

$$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \middle| \pi^E\right] \geq E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \middle| \pi\right] \quad \forall \pi$$

$$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \middle| \pi\right] \geq E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) \middle| \pi\right] \quad \forall \pi$$

How can search be made tractable?

Linear reward functions

Define R^* as a linear combination of features:

$$R^*(s) = w^T \phi(s)$$
 , where $\phi: S o \mathbb{R}^n$

Then,

$$E\left[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi\right] = E\left[\sum_{t=0}^{\infty} \gamma^t w^T \phi(s_t) | \pi\right]$$
$$= w^T E\left[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) | \pi\right]$$
$$= w^T \mu(\pi)$$

Thus, the expected value of a policy can be expressed as a weighted sum of the expected features $\,\mu(\pi)$

A simplified optimization problem

Originally - Explain expert demos by finding R^* such that:

$$E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi^E] \ge E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] \quad \forall \pi$$

Use expected features:

$$E[\sum_{t=0}^{\infty} \gamma^t R^*(s_t) | \pi] = w^T \mu(\pi)$$

Restated - find w^* such that:

$$w^*\mu(\pi^E) \geq w^*\mu(\pi) \quad \forall \pi$$

Iterative reward search

Goal: Find w^* such that: $w^*\mu(\pi^E) \geq w^*\mu(\pi) \ \forall \pi$

I. Initialize π_0 to any policy

Iterate for i = 1, 2, ...:

2. Find w^* s.t. expert maximally outperforms all previously examined policies $\pi_{0...i-1}$:

$$\max_{\epsilon, w^*: \|w^*\|_2 \leq 1} \epsilon \quad \text{s.t.} \quad w^* \mu(\pi^E) \geq w^* \mu(\pi_j) + \epsilon$$

- 3. Use RL to calc. optimal policy π_i associated with w^*
- 4. Stop if $\epsilon \leq$ threshold

A (rough) illustration

A (rough) illustration

A (rough) illustration

Naive IRL challenges

- RL in the inner loop
- Where do linear features come from?
- Underspecified inference problem: infinite reward functions that explain behavior equally well. Which one to choose?
- Policies are underspecified too: many policies lead to the same expected features counts. Which one to choose?
- What if demonstrated behavior was actually suboptimal?

Suboptimality and policy mixtures

- If a demonstrator acts optimally, then there trivially is some reward function for which **at least one** optimal policy exists that matches the demonstrator's expected feature counts exactly
- But if the demonstrations are sometimes suboptimal, then there may be no single reward function with this property (aside from degenerate ones e.g. all zeros, under which everything is optimal)
- This can be thought of as the demonstrator sometimes acting optimally under a different reward function, so a mixture of reward functions (and their corresponding optimal policies) would be needed to match the feature counts
- Instead, we will now consider policies that are not strictly optimal, but produce trajectories in proportion to their return:

$$P(\zeta_i|\theta) = \frac{1}{Z(\theta)} e^{\theta^{\top} \mathbf{f}_{\zeta_i}}$$

Principle of maximum entropy

- **Definition:** the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, subject to your constraints.
- Intuitively: Don't overcommit in ways that aren't supported by the data e.g. don't prefer one trajectory over another if they have the same return.
- Practical consequence for IRL: Tells us how to tiebreak between reward functions that explain the data equally well.
- How?: Find a reward function that matches expert feature counts under a specific trajectory distribution:

$$P(\zeta_i|\theta) = \frac{1}{Z(\theta)} e^{\theta^{\top} \mathbf{f}_{\zeta_i}}$$

• Why this distribution?: If you have specific expected feature counts ${\bf f}$ that you wish to match, it is known that the maximum entropy trajectory distribution that matches ${\bf f}$ is of the above form for some θ

Principle of maximum entropy

Trajectory vs. action-based reasoning

$$P(ext{action } a | \theta, T) \propto \sum_{\zeta: a \in \zeta_{t=0}} P(\zeta | \theta, T)$$
 Vs. $P(ext{action } a | s_i, \theta) \propto e^{Q^*(s_i, a)}$

Paths 1, 2, and 3 have equal return, so all should be p=1/3 under MaxEnt

Trajectory probabilities

Deterministic:
$$P(\zeta_i|\theta) = \frac{1}{Z(\theta)}e^{\theta^{\top}\mathbf{f}_{\zeta_i}}$$

Stochastic:
$$P(\zeta|\theta,T) \approx \frac{e^{\theta^{-1}\mathbf{f}_{\zeta}}}{Z(\theta,T)} \prod_{s_{t+1},a_{t},s_{t} \in \zeta} P_{T}(s_{t+1}|a_{t},s_{t})$$

Learning a reward function

$$\theta^* = \operatorname*{argmax}_{\theta} L(\theta) = \operatorname*{argmax}_{\theta} \sum_{\text{examples}} \log P(\tilde{\zeta}|\theta, T)$$

$$\nabla L(\theta) = \tilde{\mathbf{f}} - \sum_{\zeta} P(\zeta|\theta, T) \mathbf{f}_{\zeta} = \tilde{\mathbf{f}} - \sum_{s_i} D_{s_i} \mathbf{f}_{s_i}$$

How to compute?

Calculating state visitation frequencies

Algorithm 1 Expected Edge Frequency Calculation

Backward pass

- 1. Set $Z_{s_{\text{terminal}}} = 1$
- 2. Recursively compute for N iterations

$$Z_{a_{i,j}} = \sum_k P(s_k|s_i,a_{i,j})e^{\operatorname{reward}(s_i|\theta)}Z_{s_k} \quad \text{Total unnormalized prob of all trajs that start at s_i and take action a_j} \\ \text{Total (weighted) exp return of all trajs that start at s_i and take action a_j}$$

$$Z_{s_i} = \sum_{a_{i,j}} Z_{a_{i,j}} + \mathbf{1}_{\{s_i = s_{\text{terminal}}\}}$$
 Total unnormalized prob of all trajs that start at s_i Total (weighted) exp return of all trajs that start at s_i

Local action probability computation

3. $P(a_{i,j}|s_i) = \frac{Z_{a_{i,j}}}{Z_{s_i}}$ MaxEnt policy under reward function theta

Forward pass

- 4. Set $D_{s_i,t} = P(s_i = s_{\text{initial}})$ Typo! Should be $D_{s_i,1}$
- 5. Recursively compute for t = 1 to N

$$D_{s_i,t+1} = \sum_{a_{i,j}} \sum_{k} D_{s_k,t} P(a_{i,j}|s_i) P(s_k|a_{i,j},s_i)$$
 Prob of being in each state at each timestep t Typo! Should be:
$$D_{s_i,t+1} = \sum_{a_{k,j}} \sum_{k} D_{s_k,t} P(a_{k,j}|s_k) P(s_i|a_{k,j},s_k)$$
 Summing frequencies

6. $D_{s_i} = \sum_t D_{s_{i,t}}$ State visitation frequencies summed over all timesteps

Learning a reward function

$$\theta^* = \operatorname*{argmax}_{\theta} L(\theta) = \operatorname*{argmax}_{\theta} \sum_{\text{examples}} \log P(\tilde{\zeta}|\theta, T)$$

$$\nabla L(\theta) = \tilde{\mathbf{f}} - \sum_{\zeta} P(\zeta|\theta, T) \mathbf{f}_{\zeta} = \tilde{\mathbf{f}} - \sum_{s_i} D_{s_i} \mathbf{f}_{s_i}$$

How to compute?

Applications

Applications

Applications

Aside: Is reward enough?

States b1 and b2 are bad: reward of -r

Desired: maximize the probability of reaching g without hitting a bad state

Always better to take action a2 — seems trivial to specify

Assume gamma = 0.8, assign a value of r to meet specification

p = 0.1 possible, but p = 0.3 impossible!