CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

Interactive RL



Reward design Is hard, demonstrations are hard

What about feedback?
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Feedback: Likert ratings

Website User Survey

1. The website has a user friendly interface.
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strongly agree neutral disagree strongly
agree disagree

2. The website is easy to navigate.
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agree disagree

3. The website's pages generally have good images.
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4. The website allows users to upload pictures easily.
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5. The website has a pleasing color scheme.
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strongly agree neutral disagree strongly
agree disagree
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TAMER

Before training: Training: After training:
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Knox and Stone, ICDL 2008
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Credit assignment over time via a gamma pdf
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Figure 3: Probability density function f(x) for a gamma(2.0, 0.28)
distribution. Reinforcement signal h is received at time 0. If ¢ and
t’ are times of consecutive time steps, credit for the time step at ¢
is [ tt, f(x)dx. Note that time moves backwards as one moves right
along the x-axis.
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COACH

TAMER feedback interpretation: (correlated with) Q*(s, a)

COACH feedback interpretation: (correlated with) A™ ( S, a)

A" (s,a) = Q™ (s,a) — V™ (s).

MacGlashan, James, et al. "Interactive learning from policy-dependent human
feedback." International conference on machine learning. PMLR, 2017.
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Figure 2. The feedback distribution for first step of the final
episode for each condition. Feedback tended to be positive for
improving behavior, but negative otherwise.
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COACH

Algorithm 1 Real-time COACH

Require: policy mg,, trace set A, delay d, learning rate o
Initialize traces e < O VA € A
observe 1nitial state sg
for t = 0 to oo do

select and execute action a; ~ 7g, (S¢, *)
observe next state s;, 1, sum feedback f;, 1, and A

for \' € A do
ey +— Ney 4
end for

Oi11 < 0 + afi11€n
end for
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