CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

LLM-based reward design

Motivation: LLM-based reward design

 We know reward design is hard

 Demonstrations and preferences require models of humans that don’t
necessarily capture them accurately, and require a lot of data to work well

 Easy for reward inference to overfit and/or mis-align to reward functions that
are highly unlikely from a human perspective

| LMs contain huge amounts of human knowledge, common sense, and priors
about things that people generally want

 Can we leverage that to do better?

Kwon M, Xie SM, Bullard K, Sadigh D. Reward design with language models.
arX1v preprint arXiv:2303.00001. 2023 Feb 27.

n-context reward learning

RL Training Prompt (p)

Alice and Bob are negotiating how to split a set of

Task description (p,) books, hats, and balls.

Alice : propose: book=1 hat=1 ball=0
Bob : propose: book=0 hat=1 ball=0
Alice : propose: book=1 hat=0 ball=1

Agreement!
Alice : 4 points

Example from user describing | o & 5'polnis

objective (versatile behavior)

(p2) Is Alice a versatile negotiator?

Yes, because she suggested different proposals.

Alice : propose: book=1 hat=1 ball=0
Bob : propose: book=0 hat=1 ball=0

Episode outcome described as Alice : propose: book=1 hat=1 ball=0

string using parse f (p3) Agreement!
Alice : 5 points
Bob :5 points

Question (p4)

RL Evaluation

(1) Sample d tl‘ajeCtOry T frOm Alice: -.
agent in a test environment

1)
Feed prompt (2)

(p) LIM LLM provides

textual output

Construct "No”
prompt (p)
(3)
Convert to int “()”

(5) using parse g
Summarize and use as
episode outcome reward signal
as string (p5)

(4) Update agent (Alice)
weights and run an
episode

using parser f

(2) Evaluate whether trajectory Alice: - ?
satisfies user objective N

Kwon M, Xie SM, Bullard K, Sadigh D. Reward design with language models.
arX1v preprint arXiv:2303.00001. 2023 Feb 27.

Slide credit: Sylee Dandekar

RL Training Prompt (p)
L Alice and Bob are negotiating how to split a set of
Task description (p;) books, hats, and balls.

Alice : propose: book=1 hat=1 ball=0
Bob : propose: book=0 hat=1 ball=0
Alice : propose: book=1 hat=0 ball=1

Agreement!
Alice : 4 points

Example from user describing Bob :5 points

objective (versatile behavior)

(p2) Is Alice a versatile negotiator?

Yes, because she suggested different proposals.

Alice : propose: book=1 hat=1 ball=0
Bob : propose: book=0 hat=1 ball=0

Episode outcome described as Alice : propose: book=1 hat=1 ball=0

string using parse f (p3) Agreement!

Alice : 5 points
Bob :5 points

Question (p,) Is Alice a versatile negotiator?

RL Evaluation

Sample a trajectory 7 from Alice: ...
(1) p.] .y Bob: --- Sl
agent 1n a test environment :

(1)
Feed prompt (2)

LIM

LLM provides
textual output

(p)

Construct No

prompt (p)

3)

Convert to int “(”

(5) using parse g
Summarize and use as
episode outcome reward signal
as string (p3)

(4) Update agent (Alice)
weights and run an
episode

using parser f

(2) Evaluate whether trajectory gli;fe:
satisfies user objective ob: - ——p

Slide credit: Sylee Dandekar

Ultimatum game

* Proposer (fixed) suggests how to split money and Responder (RL agent) and accept or
reject. If reject, no one gets anything

* Rational responder will accept any offer, but if trying to align with user, humans often try to
punish an unfair proposer, even if irrational

* They experiment with synthetic users:

* Low vs High Percentages. Users will reject proposals if they receive less than{30%, 60%} of the

endowment.
 Low vs High Payoffs. Users will reject unfair proposals if they receive less than{$10, $100}. They
accept unfair proposals otherwise.

* Inequity Aversion (()). Users will reject proposals if they do not receive
exactly 50% of the endowment.

Task
description

Examples of
Objective

{

<

Ultimatum game

10 Examples, No Explanation

1 Example, with Explanation

P1 and P2 are playing the Ultimatum Game. P1 proposes how they
should split $10 and P2 can either accept or reject. If P2 accepts, then

the deal is done. If P2 rejects, then both parties get nothing.

P1 proposes a split of $4.21 for P1 and $5.79 for P2. P2 rejected this
offer. A desirable outcome is defined as one where P2 punishes P1's
selfish behavior. Is the outcome desirable?

No

P1 proposes a split of $1.28 for P1 and $8.72 for P2. P2 rejected this
offer. A desirable outcome is defined as one where P2 punishes P1's
selfish behavior. Is the outcome desirable?

No

P1 proposes a split of $9.78 for P1 and $0.22 for P2. P2 rejected this
offer. A desirable outcome is defined as one where P2 punishes P1's
selfish behavior. Is the outcome desirable?

Yes

[7 more examples] E pisodc’ outcome

/V
P1 proposes a split of $9.21 for P1 and $0.79 for P2. P2 rejected this

offer. A desirable outcome is defined as one where P2 punishes P1's
selfish behavior. Is the outcome desirable?

Question

P1 and P2 are playing the Ultimatum Game. P1 proposes how they

should split $10 and P2 can either accept or reject. If P2 accepts, then » Sk L
. . . . description
the deal is done. If P2 rejects, then both parties get nothing. J
P1 proposes a split of $9.78 for P1 and $0.22 for P2. P2 rejected this)
offer. A desirable outcome is defined as one where P2 punishes P1's | Example of
selfish behavior. Is the outcome desirable? Let's think step by step: Objective
P2 receives $0.22 < $3 so P2 should reject this offer. Therefore, the
outcome is desirable. L /
» Episode outcome
P1 proposes a split of $9.21 for P1 and $0.79 for P2. P2 rejected this
offer. A desirable outcome is defined as one where P2 punishes P1's
selfish behavior. Is the outcome desirable? Let's think step by step:\'Q .
Question

Ultimatum game

Labeling Accuracy

Low vs High % Low vs High Payoffs
(10 examples, ours w/o expl.) (1 example, ours w. expl.) (10 examples ours w/o expl.) (1 example, ours w. expl.)
1 - 14 1 -
| | | SL
| | B Ours
0 - 0 0
<30% <60% <30% <60% <$10 <$100 <$10 <$100
RL Agent Accuracy
(10 examples, ours w/o expl.) (1 example, ours w. expl.) (10 examples, ours w/o expl.) (1 example, ours w. expl.) ot
1 - 11 11
| I B Ours
I True
0 - 0 - 0 - Reward
<30% <60% <30% <60% <$10 <$100 <510 <$100

Figure 2: Ultimatum Game, Few-shot. (Top) Accuracy of reward signals provided by LLLM and SL during RL
training when prompted with/trained on 10 vs 1 example. (Bottom) Corresponding accuracy of RL agents after training.
LLM is able to maintain a high accuracy when prompted with a single example followed by an explanation. We do not
provide figures of Inequity Aversion because both LLLM and SL trivially achieve perfect labeling and RL agent accuracy.

Matrix Game

Automated Metrics (Ground Truth Rewards)

» Total Welfare: Outcomes that achieve the greatest sum
Action 1 Action 2 of player rewards O O

Acton1| 2,1 0, 0 » Equality: Outcomes that result in equal rewards O O

» Rawilsian Fairness: Outcomes that maximize the
Action21 () (O 1, 2 minimum reward any player can receive () ()

* Pareto-optimality: Outcomes where one of the

corresponding rewards cannot be improved without
lowering the other () (O

Slide credit: Sylee Dandekar

<

Task
description

Question =

Total Welfare

Matrix Game

Equality

Rawlsian Fairness

Pareto-optimality

No Objective

We have a two-player game
where P1 and P2 can choose
one of these options.
Options:

A. if action1(P1) and
action1(P2) => P1 gets reward
of 2, P2 gets reward of 2.

B. if action1(P1) and
action2(P2) => P1 gets reward
of 1, P2 gets reward of 3.

C. if action2(P1) and
action1(P2) => P1 gets reward
of 3, P2 gets reward of 1.

D. if action2(P1) and
action2(P2) => P1 gets reward
of 0, P2 gets reward of 0.

Which option(s) result in the
greatest total welfare? Let's

think step by Step: Description
Total welfareis ¢ Objective

We have a two-player game
where P1 and P2 can choose
one of these options.
Options:

A. if action1(P1) and
action1(P2) => P1 gets reward
of 2, P2 gets reward of 2.

B. if action1(P1) and
action2(P2) => P1 gets reward
of 1, P2 gets reward of 3.

C. if action2(P1) and
action1(P2) => P1 gets reward
of 3, P2 gets reward of 1.

D. if action2(P1) and
action2(P2) => P1 gets reward
of 0, P2 gets reward of 0.

Which option(s) result in
equality of rewards? Let's
think step by step:
Equality of rewards is

We have a two-player game
where P1 and P2 can choose
one of these options.
Options:

A. if action1(P1) and
action1(P2) =>P1 gets reward
of 2, P2 gets reward of 2.

B. if action1(P1) and
action2(P2) => P1 gets reward
of 1, P2 gets reward of 3.

C. if action2(P1) and
action1(P2) => P1 gets reward
of 3, P2 gets reward of 1.

D. if action2(P1) and
action2(P2) => P1 gets reward
of 0, P2 gets reward of 0.

Which option(s) result in
Rawlsian fair rewards? Let's
think step by step:

Rawlsian fairness is

We have a two-player game
where P1 and P2 can choose

one of these options.
Options:

A. if action1(P1) and
action1(P2) => P1 gets reward
of 2, P2 gets reward of 2.

B. if action1(P1) and
action2(P2) => P1 gets reward

of 1, P2 gets reward of 3.

C. if action2(P1) and
action1(P2) => P1 gets reward

of 3, P2 gets reward of 1.

D. if action2(P1) and
action2(P2) => P1 gets reward
of 0, P2 gets reward of 0.

Which option(s) are Pareto-
optimal? Let's think step by
step:

An outcome is Pareto-
optimal if

We have a two-player game
where P1 and P2 can choose
one of these options.
Options:

A. if action1(P1) and
action1(P2) => P1 gets reward
of 2, P2 gets reward of 2.

B. if action1(P1) and
action2(P2) => P1 gets reward
of 1, P2 gets reward of 3.

C. if action2(P1) and
action1(P2) => P1 gets reward
of 3, P2 gets reward of 1.

D. if action2(P1) and
action2(P2) => P1 gets reward
of 0, P2 gets reward of 0.

Which option(s) should P1
and P2 select?

Labeling accuracy:

e Regular order: Outperforms by 48% on average
e Scrambled order: Outperforms by 36% on

Matrix Game

daverage
Total Welfare
10]]
I
I
0.5 - |
I
| .
0.0 T T
Regular Scrambled
Order Order
Total Welfare
1.0 -
0.5 -]
0.0 -
No Qurs True
Objective Reward

Action 1 Action 2
Action 1 2 ’ 1 O, 0
Action 2
Labeling Accuracy
Equal Rewards Rawlsian Fair Pareto-Optimal
1.0 ' 1.0 ' 1.0 ' No
: B Ours : Objective
(5>~ I 0.5 - ' 0.5 - '
| | |
I] i I |
0.0 , , 0.0 . . , 0.0 , : ,
Regular Scrambled Regular Scrambled Regular Scrambled
Order Order Order Order Order Order
RL Agent Accuracy (Regular Order)
Equal Rewards Rawlsian Fair Pareto-Optimal
1.0 - 1.0 1.0
i
0.5 - 0.5 4 0.5 -
0.0 - 0.0 ' 0.0 u
No Ours True No Qurs True No Ours True
Objective Reward Objective Reward Objective Reward

Slide credit: Sylee Dandekar

DealOrNoDeal Task

Baseline: Supervised learning model trained to predict reward, given same
examples.

Alice : propose: book=1 hat=1 ball=0
Bob : propose: book=0 hat=1 ball=0

Negotiation Styles: Alice : propose: book=1 hat=0 ball=1
1. Versatile ngireerzenq t
ce : 4 points
2. Pusn O_/?r Bob :5 points
3. Competitive @ = = @ @c—————m—m—m—omooommmee =
4 Stubborn Is Alice a versatile negotiator?

Yes, because she suggested different proposals.

Slide credit: Sylee Dandekar

1.0

0D

DealOrNoDeal Task: LLM Accuracy

Labeling Accuracy
Versatile Push-Over Competitive Stubborn
1.0 1.0 1.0
- 0.5 - : 0.5 - 0.5 - :
0.0 0.0 0.0
SL Ours SL Ours SL Ours SL Ours

(2)

LIM LLM provides
\dual output

IINOH

Slide credit: Sylee Dandekar

1.0 5

0.5 -

Versatile

0.0

SL

Ours

DealOrNoDeal Task: RL Accuracy

Stubborn

RL Agent Accuracy .
Push-Over Competitive
1.0 1 1.0 -
0.5 - “ 0.5 |
. 0.0 T 0.0
True oL Ours True SL Ours True
Reward Reward Reward

e Outperforms SL by an average of 46%
e Underperforms ground truth by an average of 4%

SL Ours True
Reward

Slide credit: Sylee Dandekar

DealOrNoDeal Task: Human Evaluation

: book=(count:1 value:4) hat=(count:1 value:3) ball=(count:3 value:1)
: book=(count:1 value:6) hat=(count:1 value:4) ball=(count:3 value:0)

O N O g rou n d trUth rewa rd S b : propose: book=1 hat=1 ball=0

: propose: book=1 hat=1 ball=3

: propose: book=1 hat=1 ball=0
o H U m a n eval U atO rS ice : propose: book=1 hat=1 ball=3

: propose: book=1 hat=1 ball=0

: propose: book=1 hat=1 ball=3

: disagree

. insist: book=0 hat=1 ball=3

. agree

Agreement!

: book=(count:1 value:4) hat=(count:3 value:1) ball=(count:1 value:3) Alice : 6 points
: book=(count:1 value:9) hat=(count:3 value:0) ball=(count:1 value:1) Bob : 6 points

: propose: book=1 hat=0 ball=1 Is Alice an ambitious negotiator?

: propose: book=1 hat=3 ball=0 |

- propose: book=1 hat=0 ball=0 Yes, because Alice did not let the deal end into disagreement and insisted on finding a solution.

. propose: book=1 hat=3 ball=1

: propose: book=1 hat=0 ball=0

: propose: book=1 hat=3 ball=1 Alice : book=(count:3 value:1) hat=(count:1 value:1) ball=(count:1 value:6)

: propose: book=1 hat=0 ball=0 Bob : book=(count:3 value:0) hat=(count:1 value:5) ball=(count:1 value:5)

: propose: book=1 hat=0 ball=0

: propose: book=1 hat=0 ball=0 Alice : propose: book=3 hat=0 ball=1

. propose: book=1 hat=0 ball=0 Bob : propose: book=0 hat=1 ball=1

: propose: book=1 hat=0 ball=0 Alice : agree

: propose: book=1 hat=0 ball=0
Bob : propose: book=1 hat=0 ball=0 Agreement!
Alice : 3 points
Disagreement?! Bob : 10 points
Alice : 0 points
Bob : 0 points

Is Al biti tiator? Is Alice an ambitious negotiator?
s Alice an ambitious negotiator”

Yes, because Alice wanted her most valued item, and took the risk of getting into a disagreement. No, because she did not propose a counter-offer to Bob’s bad offer.

DealOrNoDeal Task: Human Evaluation

Avg. User Rating of
~ Alignment to Correct
Style

Agent Trained Agent Trained w.
w. Correct Style Opposite Style

(Only 10 participants)

Slide credit: Sylee Dandekar

Limitations

(1) o)
Feed prompt
(p) LLM LLM provides
/ textual output
"No” Only used binary rewards
Construct R

Requires text based inputs . prompt(p)

(3)

Convert to int “(”
(5) using parse g
Summarize and use as
episode outcome reward signal

as .strmg (P3) (4) Update agent (Alice)
using parser f weights and run an

episode

Slide credit: Sylee Dandekar

Assumptions

* [he prior paper assumed existence a parser
* Only worked with binary rewards

 Not interpreatable

Eureka

@ Environment Code

class ShadowHandPenSpin(VecTask):
def compute_observations(self):
self.obj_pose = ...
self.obj_pos
self.obj _rot = ...
self.obj_linvel
self.obj_angvel

self.tgt_pose = ...
self.tgt_pos
self.tgt_rot

self.fingertip_state = ...
self.fingertip_pos = ...

self.compute_full_state()

def compute_full_state(self):

Task Description

& Coding LLM
(GPT 4)

A

M

Query with
Feedback

Ma YJ, Liang W, Wang G, Huang DA, Bastani O, Jayaraman D, Zhu Y, Fan L,
Anandkumar A. Eureka: Human-level reward design via coding large language
models. arXiv preprint arXiv:2310.12931. 2023 Oct 19.

def compute_reward(
(:2\ obj_rot, obj_angvel, ...
)

Reward # Angular velocity penalty

To make the shadow hand spin the pen
to a target orientation

We trained a RL policy using the
provided reward function code...
av_penalty: ['0.02', '0.05',
'0.05', '0.04', '0.03', ...]
success_rate: ['0.00', '0.38',
LTI A S U (] S R) Uy S |
Please carefully analyze the policy
feedback and provide a new, improved
reward function...

Candidate av_norm = torch.norm(obj_angvel)
. av_penalty = torch.where(
Sampling av_norm > 2.0,
) torch.exp(av_norm - 2.0)

)

Eureka GPU-

Reward
Reflection

Figure 2: EUREKA takes unmodified environment source code and language task description as context to
zero-shot generate executable reward functions from a coding LLM. Then, it iterates between reward sampling,
GPU-accelerated reward evaluation, and reward reflection to progressively improve its reward outputs.

Eureka

Eureka

Algorithm 1 EUREKA

1: Require: Task description [/, environment code M,

coding LLM LLM, fitness function F', initial prompt prompt
2. Hyperparameters: search iteration [V, iteration batch size K
3: for N iterations do
// Sample K reward code from LLM
Ri,...,Rx ~ LLM(l, M, prompt)
// Evaluate reward candidates
S1 = F(Rl), vy SK = F(RK)
// Reward reflection
prompt := prompt : Reflection(Ry. ¢, Shest)s
where best = arg maxy si1, ..., Sk
10: // Update Eureka reward
11: REureka, SEureka — (Rg’ést, Sl?ést), if Sl?est > SEureka
12: Output: Rgyreka

WIS H

Eureka

Prompt 1: Initial system prompt

You are a reward englineer trying to write reward functions to solve reinforcement learning
tasks as effective as possible.

Your goal 1s to write a reward function for the environment that will help the agent learn the
task described 1n text.

Your reward function should use useful variables from the environment as inputs. As an example

’
the reward function signature can be:

@torch. jit.script

def compute_reward(object_pos: torch.Tensor, goal_pos: torch.Tensor) —> Tuple[torch.Tensor,
Dict[str, torch.Tensor]]:

return reward, {}

Since the reward function will be decorated with @torch.jit.script,

please make sure that the code i1s compatible with TorchScript (e.g., use torch tensor instead
of numpy array).

Make sure any new tensor or variable you introduce 1s on the same device as the input tensors.

Eureka

Prompt 3: Code formatting tip

The output of the reward function should consist of two items:
(1) the total reward,
(2) a dictionary of each individual reward component.
The code output should be formatted as a python code string: " ‘‘‘python ... ‘''".

Some helpful tips for writing the reward function code:
(1) You may find it helpful to normalize the reward to a fixed range by applying
transformations like torch.exp to the overall reward or its components
(2) If you choose to transform a reward component, then you must also introduce a
temperature parameter 1nside the transformation function; this parameter must be a named
variable i1n the reward function and it must not be an input variable. Each transformed
reward component should have its own temperature variable
(3) Make sure the type of each input variable 1is correctly specified; a float input
variable should not be specified as torch.Tensor
(4) Most importantly, the reward code’s input variables must contain only attributes of
the provided environment class definition (namely, variables that have prefix self.).
Under no circumstance can you introduce new 1nput variables.

Eureka

Prompt 2: Reward reflection and feedback

We trained a RL policy using the provided reward function code and tracked the values of the
individual components in the reward function as well as global policy metrics such as
success rates and episode lengths after every {epoch_freq} epochs and the maximum, mean,
minimum values encountered:

<REWARD REFLECTION HERE>

Please carefully analyze the policy feedback and provide a new, improved reward function that
can better solve the task. Some helpful tips for analyzing the policy feedback:
(1) If the success rates are always near zero, then you must rewrite the entire reward
function
(2) If the values for a certain reward component are near identical throughout, then this
means RL 1s not able to optimize this component as it 1s written. You may consider
(a) Changing 1its scale or the value of 1ts temperature parameter
(b) Re—writing the reward component
(c) Discarding the reward component
(3) If some reward components’ magnitude i1s significantly larger, then you must re-scale
its value to a proper range
Please analyze each existing reward component i1n the suggested manner above first, and then
write the reward function code.

Eureka

55.30
20 1 45.90 8 207 | e Sparse E 2R
Q v
T 40 - b 1.42
@ 40 © 1.5 - :
o & 1.24
v 3 '° 1.001.00 100100 O 1.02 .99
g 24.40 £ 10 t= o= - —
) =
O 207 =
= -
wn 10.40 o 0.5-
10 - g
1. 04 2.04
ola
00 — -_— - -
0- 1_ Y ' T T T
Dexterity (20 Tasks) Cartpole BaIIBaIance QuadcopterFrankaCabmet Humanoid Anymal AllegroHandShadowHand

Figure 4: EUREKA outperforms Human and L2R across all tasks. In particular, EUREKA realizes much greater
gains on high-dimensional dexterity environments.

Eureka

Dexterity |Isaac
0.55 +

Q

—

S
o 0.50 - 2
© ks
o 0.45 - N
") ©
v =
Q@ 0.40 - —
U O
W) -
_— i -
g 035 =

-

0.30 - £ O
' Eureka Iteration = Eureka Iteration
1 2 3 4 5 1 2 3 4 5
=@= Eureka - = Human - = Eureka w.o Evolution (32 Samples)

Figure 5: EUREKA progressively produces better rewards via in-
context evolutionary reward search.

Eureka

Eureka Rewards vs. Human Rewards on IsaacGym

1.0 - N . C
o 8 o
081 - ®
" ‘.‘
-
9 0.6 - ..
4‘-01 ‘
I 0.4 -
-
O 0.2- ®
O
- O
E 0.0 °
3
-0.2
oC (@)
O
—0.4 - @® Eureka Win (Count: 27)
, Human Win (Count: 8)
—0.6 - : A Tied (Count: 10)

—1'.0 —(;.S 0.0 0.'S 1.'0 ljS 2.'0 2.'5
Human Normalized Score (Log Scale)

Figure 6: Eureka generates novel rewards.

Eureka

Pen Spinning with Eureka

—
- (o) o o
A 1 1 J

Spinning Cycles

Gradient Steps (x 2000)

0 20 40 60 80 100
m— Fne-Tuned m— Scratch == = Pre-Trained (Zero-Shot)

Figure 7: EUREKA can be flexibly combined with cur-
riculum learning to acquire complex dexterous skills.

Eureka

1.0

0.8 -

e
o

Success Rate
=]
&~

0.2

0.0 -

SwingCup DoorCloseQutward DoorOpeninward CatchUnderarm

e Fureka s Human N Eureka (Human Init,)

Figure 8: EUREKA effectively improves and benefits
from human reward 1nitialization.

Eureka

Q Eureka

Q Reward
Reflection <— & Human

Iteration 1 Iteration 2 Iteration 3 [teration 4 Iteration 5

Figure 9: EUREKA can incorporate human feedback to modify rewards and induce more human-aligned policys.

Method Forward Velocity Human Preference
EUREKA 7.53 5/20
EUREKA-HF 5.58 15/20

Table 1: Human users prefer the Humanoid behavior
learned via EUREKA rewards generated using human
reward reflection.

