CS 690: Human-Centric Machine Learning

Prof. Scott Niekum

Behavioral Cloning

Reinforcement Learning

$$V_R^\pi = \mathbb{E}\left[\sum_{t=0}^\infty \gamma^t R(s_t) \middle| \pi\right]$$

$$\pi: S \times A \to [0,1]$$

$$\text{State } S_t \text{ Reward } R_t \text{ action } A_t \text{ action } A_t \text{ Preward } R_t \text{ Environment}$$

$$RL$$

$$R: S \to \mathbb{R}$$

Imitation Learning

- Natural and expressive
- No expert knowledge required
- Valuable human intuition
- Program new tasks as-needed

The Perils of Trial-and-Error Reward Design: Misdesign through Overfitting and Invalid Task Specifications

Serena Booth^{1,2,3}, W. Bradley Knox^{1,2,5}, Julie Shah³, Scott Niekum^{2,4}, Peter Stone^{2,6}, Alessandro Allievi^{1,2}

Figure 1: **Median human-normalized performance** across 57 Atari games. We compare our integrated agent (rainbow-

Hessel, Matteo, et al. "Rainbow: Combining improvements in deep reinforcement learning." *Proceedings of the AAAI conference on artificial intelligence*. Vol. 32. No. 1. 2018.

Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile aloha: Learning bimanual mobile manipulation with low-cost whole-body teleoperation." *arXiv preprint arXiv:2401.02117* (2024).

Behavioral cloning

$$D = \{s_t, a_t, s_{t+1}\}_N$$

Learn: $\pi:S \to A$

or more generally: $\pi(s,a) := p(a|s)$

Straightforward supervised learning problem

Behavioral cloning from observation

$$D = \{s_t, a_t, s_{t+1}\}_N$$

Learn: $\pi:S\to A$

or more generally: $\pi(s,a) := p(a|s)$

How to infer action that caused transition from S_t to S_{t+1} ?

Inverse dynamics

Dynamics:
$$p(s_{t+1}|s_t,a_t)$$

Inverse dynamics:
$$p(a_t|s_t,s_{t+1})$$

Learn inverse dynamics from offline data:

$$\theta^* = \arg \max_{\theta} \prod_{i=0}^{|\mathcal{I}^{pre}|} p_{\theta}(a_i | s_i^a, s_{i+1}^a)$$

...and guess the missing demonstration actions: $D = \{s_t, p_t, s_{t+1}\}_N$ Now we're back to standard BC problem!

Agent-specific vs. task-specific state

$$S = S^a \times S^t$$

BCO task

BCO(alpha)

Baselines

- GAIL and FEM
 - We'll look at methods like these later in the course
 - At a high-level, they aim to match state-action occupancies / feature expectations
 - To do so, need to have post-demonstration data to learn policies that match the state/features well

- Claims:
 - An inverse model can be learned from pre-demonstration data
 - A task-agnostic inverse dynamics model can be learned
 - BCO can accurately imitate with observation-only data
 - BCO allows for imitation without post-demonstration interaction
 - However, post-demonstration data helps, if you're willing to collect it
 - BCO is better with less data than competing approaches

- Claims supported?
 - An inverse model can be learned from pre-demonstration data
 - No direct experiments testing accuracy of inverse dynamics model, only done in context of how it effects downstream policy learning
 - No experiments examining effects of different amounts of pre-demonstration data
 - If BCO works well overall, then the inverse model must be decent
 - A task-agnostic inverse dynamics model can be learned
 - Reacher domain has partitioned agent/task state space
 - Only assess accuracy of overall algorithm, not inverse model
 - Partitioned by hand, and they don't show consequences of not partitioning

- Claims supported?
 - BCO can accurately imitate with observation-only data / without post-demonstration interaction / with less data than competing approaches
 - Performance much better than random, often close to expert, and often close to action-aware BC.
 - Competitive with baselines that have access to actions (kind of like having infinite pre-demonstration data)
 - Performance steadily improves with additional pre-demonstration data
 - 20 trials + small standard error bars provides confidence of correctness of results
 - They show that other methods (e.g. GAIL) need many post-demonstration interactions to do as well as BCO(0). But these are very simple domains, and GAIL has better guarantees than BCO outside of the support of the demonstrations.
 - Post-demonstration data helps, if you're willing to collect it
 - Performance increases as alpha increases and approaches action-aware BC

Questions:

- All experiments were with synthetic demonstrations from TRPO. How close to optimal were they? Does BCO's performance gracefully degrade with noisy demonstrations, e.g. from humans?
- Can agent/task state space partitioning be learned? How much does performance suffer if you don't partition?
- Domains were quite simple, but the motivation in the introduction was learning from Youtube videos. What would it take to scale? Can partitioning be learned (implicitly, perhaps)?

Reproducibility:

- Details provided of each domain, neural network architectures, number of interactions, etc.
- While architecture is specified for dynamics model, they don't say what it is for policy
- Not clear if/how hyperparameters for GAIL and FEM were tuned

Archaeologist

BCO cites:

Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., & Barto, A. G. (2015). Learning grounded finite-state representations from unstructured demonstrations. *The International Journal of Robotics Research*, *34*(2), 131-157.

BCO cited by:

Torabi, F., Warnell, G., & Stone, P. (2018). Generative adversarial imitation from observation. *In ICML Workshop on Imitation, Intent, and Interaction. arXiv preprint arXiv:1709.04905, 2019*

- Also imitates from observations
- Doesn't need actions due to robot arm controller with known functional form and simplistic generalization based only on changing start/goal locations
- Automatically segments and reuses sub-skills for complex, multi-step tasks
- Same authors!
- Aims to address compounding error that BCO can experience due to being purely supervised
- Essentially GAIL, but from observation-only data
- Performs state occupancy matching instead of stateaction occupancy matching
- Has above advantages compared to BCO, but also requires post-demonstration data

Academic researcher

- Study approaches and effects of automatic agent/task state partitioning:
 - In a simple domain, study performance degradation as task-specific variables are leaked into agent's state space for inverse model.
 - Study multi-task pre-demonstration setting. As number of tasks are increased, how does (1) inverse model performance change and (2) BCO performance change?
 - Does the inverse model overfit to training tasks or generalize well to new tasks?
 How does regularization effect this?
 - How does domain complexity influence the above? E.g. real-world robotic manipulation from video vs. reacher domain?

Downsides of behavioral cloning

Quadratic regret

$$\hat{\pi}_{sup} = \operatorname*{arg\,min}_{\pi \in \Pi} \mathbb{E}_{s \sim d_{\pi^*}} [\ell(s, \pi)] \tag{2}$$

Assuming $\ell(s, \pi)$ is the 0-1 loss (or upper bound on the 0-1 loss) implies the following performance guarantee with respect to any task cost function C bounded in [0, 1]:

Theorem 2.1. (Ross and Bagnell, 2010) Let
$$\mathbb{E}_{s \sim d_{\pi^*}}[\ell(s,\pi)] = \epsilon$$
, then $J(\pi) \leq J(\pi^*) + T^2 \epsilon$.

Compare to typical supervised learning loss that grows as: $O(\epsilon T)$

DAgger

```
Initialize \mathcal{D} \leftarrow \emptyset.

Initialize \hat{\pi}_1 to any policy in \Pi.

for i=1 to N do

Let \pi_i = \beta_i \pi^* + (1-\beta_i) \hat{\pi}_i.

Sample T-step trajectories using \pi_i.

Get dataset \mathcal{D}_i = \{(s, \pi^*(s))\} of visited states by \pi_i and actions given by expert.

Aggregate datasets: \mathcal{D} \leftarrow \mathcal{D} \bigcup \mathcal{D}_i.

Train classifier \hat{\pi}_{i+1} on \mathcal{D}.

end for

Return best \hat{\pi}_i on validation.
```

Algorithm 3.1: DAGGER Algorithm.

Key idea: keep collecting demonstration data that is on-distribution for current policy, and reduce dependence on expert over time

Awkward!

Difficult to give good demonstrations when you only have control betapercent of the time?

DAgger

Theorem 2.2. Let π be such that $\mathbb{E}_{s \sim d_{\pi}}[\ell(s, \pi)] = \epsilon$, and $Q_{T-t+1}^{\pi^*}(s, a) - Q_{T-t+1}^{\pi^*}(s, \pi^*) \leq u$ for all action $a, t \in \{1, 2, ..., T\}, d_{\pi}^t(s) > 0$, then $J(\pi) \leq J(\pi^*) + uT\epsilon$.

Proof. We here follow a similar proof to Ross and Bagnell (2010). Given our policy π , consider the policy $\pi_{1:t}$, which executes π in the first t-steps and then execute the expert π^* . Then

$$J(\pi) = J(\pi^*) + \sum_{t=0}^{T-1} [J(\pi_{1:T-t}) - J(\pi_{1:T-t-1})]$$

$$= J(\pi^*) + \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^t} [Q_{T-t+1}^{\pi^*}(s,\pi) - Q_{T-t+1}^{\pi^*}(s,\pi^*)]$$

$$\leq J(\pi^*) + u \sum_{t=1}^{T} \mathbb{E}_{s \sim d_{\pi}^t} [\ell(s,\pi)]$$

$$= J(\pi^*) + uT\epsilon$$

The inequality follows from the fact that $\ell(s, \pi)$ upper bounds the 0-1 loss, and hence the probability π and π^* pick different actions in s; when they pick different actions, the increase in cost-to-go $\leq u$.

Theorem 3.1. For DAGGER, if N is $\tilde{O}(T)$ there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $\mathbb{E}_{s \sim d_{\hat{\pi}}}[\ell(s, \hat{\pi})] \leq \epsilon_N + O(1/T)$

In particular, this holds for the policy $\hat{\pi} = \arg\min_{\pi \in \hat{\pi}_{1:N}} \mathbb{E}_{s \sim d_{\pi}}[\ell(s,\pi)]$. If the task cost function C corresponds to (or is upper bounded by) the surrogate loss ℓ then this bound tells us directly that $J(\hat{\pi}) \leq T\epsilon_N + O(1)$. For arbitrary task cost function C, then if ℓ is an upper bound on the 0-1 loss with respect to π^* , combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is $\tilde{O}(uT)$ there exists a policy $\hat{\pi} \in \hat{\pi}_{1:N}$ s.t. $J(\hat{\pi}) \leq J(\pi^*) + uT\epsilon_N + O(1)$.