CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

Behavioral Cloning

Reinforcement Learning Imitation Learning

VE =E[> o7 R(s¢)|7]

*k
TR
" T RL
reSx A0l ,\
Behavioral
cloning
o pmml
&
>k

(5

i85

Inverse RL

™~

O

Why learn from demonstrations?

*Natural and expressive

*No expert knowledge required
*Valuable human inturtion

*Program new tasks as-needed

General purpose
robot

> Specific task > Expentersgneer

Why learn from demonstrations?

The Perils of Trial-and-Error Reward Design:
Misdesign through Overtfitting and Invalid Task Specifications

Serena Booth!*>, W, Bradley Knox!*°, Julie Shah’,
Scott Niekum?*, Peter Stone*°, Alessandro Allievi'~

Why learn from demonstrations?

DQN
— DDQN
- Prioritized DDQN | 1
~— Dueling DDQN
200%- a3C W af\
Distributional DQN Ar
— Noisy DQN "
== Rainbow

100% |-

Median human-normalized score

o) 1 |
0% 7 44 OC 200

Figure 1: Median human-normalized performance across

57 Atari games. We compare our integrated agent (rainbow-
Hessel, Matteo, et al. "Rainbow: Combining improvements
in deep reinforcement learning." Proceedings of the AAAI
conference on artificial intelligence. Vol. 32. No. 1. 2018.

Why learn from demonstrations?

How to provide demonstrations?

.

Fu, Zipeng, Tony Z. Zhao, and Chelsea Finn. "Mobile aloha: Learning
bimanual mobile manipulation with low-cost whole-body teleoperation.”
arXiv preprint arXiv:2401.02117 (2024).

How to provide demonstrations?

How to provide demonstrations?

How to provide demonstrations?

How to provide demonstrations?

m What is the best burger recipe?

There are many different burger recipes out there, and the "best"” one will depend on
personal preference. Some people prefer their burgers to be simple and classic, while

others like to experiment with different ingredients and flavors.
Here Is a basic burger recipe that can serve as a starting point:
Ingredients:

* 1 pound ground beef
* 4 hamburger buns
* Lettuce, tomato, onion, and other toppings of your choice

* Salt and pepper

Instructions:

Behavioral cloning

D = {Staatvst l}N

Learn: m: S5 — A
or more generally: 7'('(8, CL) .= p(a|3)

Straightforward supervised learning problem

Behavioral cloning from observation

D = {8t7%7 St l}N

Learn: ™: S — A

or more generally: 7'('(8, CL) .= p(a|3)

How to infer action that caused transition from S¢ to S¢+1 ?

Inverse dynamics

Dynamics: p(St—I—l |St, at)

Inverse dynamics: p(@t | St St—l—l)

Learn inverse dynamics from offline data:

* 2577 a a
0" = arg 1maxy Hi:O Do (af’i |Si) Si—l—l)

...and guess the missing demonstration actions: [) — {St \ % y St1-1 } N

Now we’re back to standard BC problem!

Agent-specific vs. task-specific state

S = 8§52 x St

Inverse dynamics learning task BCO task

BCO(alpha)

BCO(0)

BCO(«a)

Pre-demonstration

Z77e|

z77e,

a|ZP"¢|

a|ZP ¢

o|ZP"¢|

Post-demonstration

a|ZP"¢|

Baselines

e GAIL and FEM
e We’'ll look at methods like these later in the course

* At a high-level, they aim to match state-action occupancies / feature
expectations

 [o do so, need to have post-demonstration data to learn policies that
match the state/features well

TMLR reviewer

e Claims:
 An inverse model can be learned from pre-demonstration data
» A task-agnostic inverse dynamics model can be learned
« BCO can accurately imitate with observation-only data
« BCO allows for imitation without post-demonstration interaction
 However, post-demonstration data helps, if you’re willing to collect it

« BCO is better with less data than competing approaches

TMLR reviewer

* Claims supported?
 An inverse model can be learned from pre-demonstration data

* No direct experiments testing accuracy of inverse dynamics model, only done in context of how
it effects downstream policy learning

* No experiments examining effects of different amounts of pre-demonstration data
e |f BCO works well overall, then the inverse model must be decent

* A task-agnostic inverse dynamics model can be learned

 Reacher domain has partitioned agent/task state space
* Only assess accuracy of overall algorithm, not inverse model

* Partitioned by hand, and they don’t show consegquences of not partitioning

TMLR reviewer

e Claims supported?

« BCO can accurately imitate with observation-only data / without post-demonstration interaction / with
less data than competing approaches

 Performance much better than random, often close to expert, and often close to action-aware BC.

 Competitive with baselines that have access to actions (kind of like having infinite pre-demonstration
data)

* Performance steadily improves with additional pre-demonstration data
o 20 trials + small standard error bars provides confidence of correctness of results

* They show that other methods (e.g. GAIL) need many post-demonstration interactions to do as well
as BCO(0). But these are very simple domains, and GAIL has better guarantees than BCO outside of

the support of the demonstrations.
 Post-demonstration data helps, if you’re willing to collect it

* Performance increases as alpha increases and approaches action-aware BC

TMLR reviewer

e Questions:

* All experiments were with synthetic demonstrations from TRPO. How close to optimal were they? Does BCO’s
performance gracefully degrade with noisy demonstrations, e.g. from humans?

 Can agent/task state space partitioning be learned? How much does performance suffer if you don’t partition?

 Domains were quite simple, but the motivation in the introduction was learning from Youtube videos. What
would it take to scale? Can partitioning be learned (implicitly, perhaps)?

* Reproducibility:
* Detalls provided of each domain, neural network architectures, number of interactions, etc.

* While architecture is specified for dynamics model, they don’t say what it is for policy

* Not clear if/how hyperparameters for GAIL and FEM were tuned

Archaeologist

BCO cites:

Niekum, S., Osentoski, S., Konidaris, G., Chitta, S., Marthi, B., &
Barto, A. G. (2015). Learning grounded finite-state representations
from unstructured demonstrations. The International Journal of

Robotics Research, 34(2), 131-157.

BCO cited by:

Torabi, F., Warnell, G., & Stone, P. (2018). Generative
adversarial imitation from observation. In ICML Workshop

on Imitation, Intent, and Interaction. arXiv preprint
arXiv:1709.04905, 2019

Also imitates from observations

Doesn’t need actions due to robot arm controller with
known functional form and simplistic generalization
based only on changing start/goal locations

Automatically segments and reuses sub-skills for
complex, multi-step tasks

Same authors!

Aims to address compounding error that BCO can
experience due to being purely supervised

Essentially GAIL, but from observation-only data

Performs state occupancy matching instead of state-
action occupancy matching

Has above advantages compared to BCO, but also
requires post-demonstration data

Academic researcher

o Study approaches and effects of automatic agent/task state partitioning:

* |n a simple domain, study performance degradation as task-specific variables are
leaked into agent’s state space for inverse model.

o Study multi-task pre-demonstration setting. As number of tasks are increased,
how does (1) inverse model performance change and (2) BCO performance
change?

* Does the inverse model overfit to training tasks or generalize well to new tasks?
How does regularization effect this?

 How does domain complexity influence the above? E.g. real-world robotic
manipulation from video vs. reacher domain?

Downsides of behavioral cloning

o

Quadratic regret

Tsup = argminEg g . [£(s,)] (2)
mell

Assuming £(s,) is the 0-1 loss (or upper bound on the 0-
1 loss) implies the following performance guarantee with
respect to any task cost function C' bounded in (0, 1]:

Theorem 2.1. (Ross and Bagnell, |2010) Let
Rsmd . [L(8,m)] =€ then J(7) < J(7*) + T"e.

Compare to typical supervised learning loss that grows as: O(eT)

DAgger

Initialize D «+ 0.

Initialize 71 to any policy in I1.

for: =1to N do
Letm; = B;7* + (]. - ,Bz)ﬁ'z
Sample 1'-step trajectories using ;.
Get dataset D; = {(s,7*(s))} of visited states by ;
and actions given by expert.
Aggregate datasets: D «— D | D;.
Train classifier 7m;1 on D.

end for

Return best 7; on validation.

Algorithm 3.1: DAGGER Algorithm.

Key idea: keep collecting demonstration data that is on-distribution for current policy,
and reduce dependence on expert over time

Awkward!

Difficult to give good demonstrations
when you only have control beta-
percent of the time?

DAgger

Theorem 2.2. Let 7 be such that Es..q, [£(s,)| = €, and Theorem 3.1. For DAGGER, if N is O(T) there exists a

™ T *) < . . ~ ~ - ~
ﬁT?“(sf’ra}) d! %;”ol o 3(})u<f0f(frlf)afls;f o policy & € #y.y s.t. Egua, [€(s,7)] < ex + O(1/T)

Proof. We here follow a similar proof to[Ross and Bagnell In particular, this holds for the policy 7 =

: ~ 3

(2010). Given our policy 7, consider the policy 7., which arg II.llnﬂ'Eﬁ'lzN Lsrdy [E(S’ W)] . If the task cost
executes 7 in the first ¢-steps and then execute the expert function C' corresponds to (or is upper bounded by) the
7*. Then surrogate loss £ then this bound tells us directly that
J(7) J(m) < Ten + O(1). For arbitrary task cost function C,
— J(n*) T4 rrrs) — J(Trr—s1) then if Z is an upper bound on the 0-1 loss with respect to
= t=0 —

] o] * bining this result with Theorem |2.2|yields that:
= J(7*) ;rzl “srd?. [QT t+1(T) — QT—t+1(3)] T, COom
<J(@) +uY,_; Eonge [€(s,m)] Theorem 3.2. For DAGGER, if N is O(uT') there exists a
= J(") +uTe policy m € 7ty1.n s.t. J(7) < J(7*) + uTen + O(1).

The inequality follows from the fact that #(s,7) upper
bounds the 0-1 loss, and hence the probability m and 7*
pick different actions in s; when they pick different actions,
the increase in cost-to-go < w.

