CS 690: Human-Centric Machine Learning Prof. Scott Niekum

Multimodal reward inference

Slide credits: Akanksha Saran and Yuchen Chi

Humans Leverage more than State-Action Pairs when Learning from one another

Types of Human Social Cues

Audio

Gestures and Body Pose

Eye Gaze

Head Pose, Facial Expressions

Key Challenges of Leveraging Human Cues for Learning

- iterative design and testing

Demonstrations are expensive to collect

• Human data often only be present at train time

 Humans provide a rich source of behavioral information, however collecting human data requires

Argyle, M. Non-verbal communication in human social interaction. 1972. Hayhoe, M & Ballard, D. Eye movements in natural behavior. Trends in cognitive sciences, 9(4), 2005.

Human Gaze reveals Intentions

Can a Situated Robot detect Human Gaze Fixations without additional Eye-tracking Hardware?

Saran, A., S. Majumdar, E. S. Short, A. Thomaz, and S. Niekum. Real-time Human Gaze Following for Human-Robot Interaction. IROS, 2018.

Gaze Patterns in Human Demonstrations for Robots

Keyframe-based Kinesthetic Teaching (KT)

Observational/Video Demonstrations

Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.

User Study and Data Collection

- Tobii Pro Glasses 2 Eye Tracker
- 20 subjects:
 - 10 expert robot users
 - 10 novice robot users
- Demonstration Types:
 - Kinesthetic Demonstrations (~124 mins)
 - Video Demonstrations (~27 mins)
- Tasks:
 - Placement (single-step)
 - Pouring (multi-step)

Understanding Human Gaze of Demonstrators for Embodied Robots

Pouring Task

"Pour pasta from green cup into red bowl and from yellow cup into blue bowl"

Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.

Placement Task

"Place the green ladle to the left of red plate" "Place the green ladle to the right of yellow bowl"

Video and Kinesthetic Demos: Users focus their Gaze on Task-Relevant objects

Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.

Kinesthetic Demos: Novice Users focus more on the Robot's Gripper

Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.

Most Gaze Fixations are on Objects of Interest under Ambiguous Demos

Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.

Gaze Fixations during Ambiguous Placement Demonstrations

Instruction: Place Green Ladle to the right of Yellow Bowl

<u>k skaleste</u>

Robot Gripper

More fixations on the yellow bowl

Analyzing Human Gaze of Demonstrators for Simulated Agents

Attention on Objects of Interest for the next Action

Centipede

Gaze indicates where the human might shoot next

Asterix

Gaze on food that should be eaten and dynamite which should be avoided

What do RL agents attend to?

(a) Game State

(b) RL Attention

What do RL agents attend to?

(a) Game State

Perturbation based method to compute RL attention

$$S_{\pi}(i,j) = \frac{1}{2} ||\pi(I) - \pi$$

Greydanus, S., Koul, A., Dodge, J., & Fern, A. Visualizing and understanding Atari agents. ICML, 2018.

(b) RL Attention

Change in policy by perturbing the image at a pixel

RL agent attention "covers" regions attended by human gaze

... while also attending to other regions

(a) Game State (

(b) RL Attention

(c) Human Gaze

Coverage Metric

$KL(P||Q) = \sum_{i} \sum_{j} P(i)$

P: Human Gaze map

Bylinskii, Z., T. Judd, A. Oliva, A. Torralba, and F. Durand. "What do different evaluation metrics tell us about saliency models?". IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.

$$(i, j) \log \left(\frac{P(i, j) + \epsilon}{Q(i, j) + \epsilon} \right)$$

Q: RL Attention Map (**No Coverage**) KL(P || Q) = **8.5**

Q: RL Attention Map (Has Coverage) KL(P || Q) = 0.9

Comparison of Human Attention and RL agent Attention

- (a) Game State
- (b) RL Attention

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

	Asterix	Breakout	Centipede RL Att	MsPacman ention	Phoenix	Seaquest	
Seaquest	5.1	7.7	6	3.5	14	2.8	
Phoenix	4.3	11	5.2	3.6	3.2	6.5	
мъгастап I	4.5	6.5	5.5	1.8	13	5.9	
renupeue	4.4	6.4	1.9	3.3	9.9	5.7	
DI EaKOUL	5.3	2.1	4.9	3.8	11	5.6	
ASICIA	1.7	7	4.6	3.1	15	6.3	

How to effectively leverage gaze for imitation learning? What if gaze is only available at train time?

- Prior approaches use gaze as an input required at test time
- Need to model gaze data per task
- A simpler alternative guide the training based on gaze data available at train time

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

 \sim /

Gaze as a supervisory signal for existing imitation learning methods

Use an auxiliary coverage-based gaze loss (CGL) to guide the attention of existing imitation learning methods

- features and rewards
- methods

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

Three Imitation Learning methods: BC, BCO, TREX

20 Atari games with varying complexity, dynamics, visual

Compare with prior state-of-the-art gaze-augmentation LfD

Atari-HEAD: Atari Human Demonstrations and Gaze Dataset

- Human gaze and demonstration data for 20 Atari Games
- EyeLink 1000 eye tracker at 1000Hz
- Total data worth 117 hours collected with 4 users

Zhang, R., C. Walshe, Z. Liu, L. Guan, K. S. Muller, J. A. Whritner, L. Zhang, M. M. Hayhoe, and D. H. Ballard. "Atarihead: Atari human eye-tracking and demonstration dataset." AAAI, 2020.

$$CGL(g, f') = \sum_{i \in (1, h)} \sum_{j \in (1, w)} g_{i, j} \left[\log \frac{g_{i, j} + \epsilon}{f'_{i, j} + \epsilon} \right]$$

where

 $f_{i,j}^{'} = \frac{1}{\sum_{k=0}^{k=h-1}}$

CGL loss

$$\frac{\exp^{f_{i,j}}}{\sum_{j=0}^{j=w-1}\exp^{f_{k,l}}}$$

CGL improves performance for 3 imitation learning algorithms

% Improvement with CGL
160%
343%
390%

CGL outperforms existing Gaze-augmentation methods for Imitation Learning

Amount of human demonstration

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

CGL Agents attend to Visual Features from Human's Overt Attention

(a) Input image (b) Human

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

(c) T-REX

(d) T-REX+CGL

Visualizing learned Agent Policies

BC

Does not learn to actively shoot the spider

AGIL

Shoots the spider when it comes directly above the agent **BC +CGL**

Actively goes and shoots the spider

Visualizing CGL agent policies

BC

Unable to hop over the skull

Unable to hop over the skull

AGIL

Learns to hop over the skull and advance ahead in the game

Understanding the Performance Gains of CGL

Can CGL reduce causal confusion for Imitation Learning methods?

P. de Haan, D. Jayaraman, & S. Levine. Causal confusion in imitation learning. NeurIPS 2019.

Correct Causal Identification

CGL reduces causal confusion compared to baseline BC algorithm

Confounded images with correlated past actions as part of the state space

(a) Breakout

P. de Haan, D. Jayaraman, & S. Levine. Causal confusion in imitation learning. NeurIPS 2019.

(b) Asterix

(c) Demon Attack

(d) Freeway

CGL reduces causal confusion compared to baseline BC algorithm

CGL suffers less with confounded data and hence reduces causal confusion compared to BC

BC [confc

BC+CGL [[original]

BC+CGL outperforms BC trained with confounded data by 571%

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.

n tested with ded images	Performance reduction with confounded images (lower is better)
ounded] v/s BC [original]	-47.8 %
confounded] v/s BC+CGL	-34.0 %

Implicit human feedback: Facial Reactions

- Occurs naturally

Is not necessarily intended to influence behavior • Can be used with no additional burden on user

EMPATHIC: Learning from implicit feedback

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox. <u>The EMPATHIC Framework for Task Learning from Implicit Human Feedback</u>. Conference on Robot Learning (CoRL), November 2020.

Steps of EMPATHIC:

- Incentivize human participant
- Collected reaction data under known GT reward (or other task statistic of interest)
- Learn human reward model (or other task statistic)
- Transfer to new tasks

Task Domains

Robotaxi

Robotic Trash Sorting

How hard is this problem?

Is there enough information to learn from implicit human feedback?

-

• Human proxy test

• Facial annotation data

	Avg. τ	p-value
	.569	.004
	.216	.185
Human	.098	.319
Proxies	176	.179
	.255	.123
	.294	.059
Avg.	.209	.078

Analyzing Annotated Facial Gestures

Learning the Reaction Mapping

Reward Ranking Prediction Performance

How to leverage the learned mapping from Robotaxi?

Binary classification

EMPATHIC: Learning from implicit feedback — deployment

Robotic Trash Sorting Performance

Kendall's Tau for per-subject ranking

0.70

red bottle then can	0.163
waterloo can	0.156
white can	0.138
red bottle	0.107
brown box	0.097
yellow can	0.087
green box	0.073
white box	0.045

Overall Ranking (avg. positivity)

0.80

