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Humans Leverage more than State-Action Pairs when Learning from one another




Types of Human Social Cues
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Gestures and Body Pose Head Pose, Facial Expressions



Key Challenges of Leveraging Human Cues for Learning

« Demonstrations are expensive to collect
« Human data often only be present at train time

« Humans provide a rich source of behavioral
information, however collecting human data requires
iterative design and testing




Human Gaze reveals Intentions

Argyle, M. Non-verbal communication in human social interaction. 1972.
Hayhoe, M & Ballard, D. Eye movements in natural behavior. Trends in cognitive sciences, 9(4), 2005.



Can a Situated Robot detect Human Gaze Fixations without additional Eye-tracking Hardware?

Mutual Gaze: False

Saran, A., S. Majumdar, E. S. Short, A. Thomaz, and S. Niekum. Real-time Human Gaze Following for Human-Robot Interaction. IROS, 2018.



Gaze Patterns in Human Demonstrations for Robots

Keyframe-based Kinesthetic Teaching (KT)

User Study and Data Collection
e Tobii Pro Glasses 2 Eye Tracker

e 20 subjects:

- 10 expert robot users
- 10 novice robot users

e Demonstration Types:

- Kinesthetic Demonstrations (~124 mins)
- Video Demonstrations (~27 mins)

e Tasks:

- Placement (single-step)
- Pouring (multi-step)

Saran, A,, E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.



Understanding Human Gaze of Demonstrators for Embodied Robots

Pouring Task Placement Task

“Place the green ladle to the left of red plate”

“Pour pasta from green cup into red bowl and
from yellow cup into blue bowl”

“Place the green ladle to the right of yellow bowl”

Saran, A,, E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.



Video and Kinesthetic Demos: Users focus their Gaze on Task-Relevant objects
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Saran, A,, E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.



Kinesthetic Demos: Novice Users focus more on the Robot’s Gripper
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Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.



Most Gaze Fixations are on Objects of Interest under Ambiguous Demos
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Saran, A., E. S. Short, A. Thomaz, and S. Niekum. Understanding teacher gaze patterns for robot learning. CoRL, 2019.



Gaze Fixations during Ambiguous Placement Demonstrations

Instruction: Place Green Ladle to the right of Yellow Bowl

Robot Gripper

-
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More fixations on the yellow bowl



Analyzing Human Gaze of Demonstrators for Simulated Agents




Attention on Objects of Interest for the next Action

Centipede Asterix

FLAYER_A_COWHLEFT

Gaze indicates where the human Gaze on food that should be eaten and
might shoot next dynamite which should be avoided



What do RL agents attend to?

(a) Game State (b) RL Attention



What do RL agents attend to?

(a) Game State (b) RL Attention

Perturbation based method to compute RL attention

1 Change in policy by

Sr(ir ) = 5 |lm(I) — w(¢(1, 4, ))I } e

Greydanus, S., Koul, A., Dodge, J., & Fern, A. Visualizing and understanding Atari agents. ICML, 2018.



RL agent attention “covers” regions
attended by human gaze

... While also attending to other regions

(a) Game State (b) RL Attention (c) Human Gaze



Coverage Metric

) . (PG))+e
KL(P||Q) = Z;P(“)log (Q(i,j) +6)

Q: RL Attention Map (No Coverage)
KL(P | ] Q)= 8.5

P: Human Gaze map

KL(P || Q)= 0.9

Bylinskii, Z., T. Judd, A. Oliva, A. Torralba, and F. Durand. “What do different evaluation metrics tell us about saliency models?”.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018.



Comparison of Human Attention and RL agent Attention
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Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.



How to effectively leverage gaze for imitation learning?
What if gaze is only available at train time?

e Prior approaches use gaze as an input required at test time
e Needto model gaze data per task

e A simpler alternative — guide the training based on gaze
data available at train time

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.



(Gaze as a supervisory signal for existing imitation learning methods

Use an auxiliary coverage-based gaze loss (CGL) to guide the
attention of existing imitation learning methods

e Three Imitation Learning methods: BC, BCO, TREX

e 20 Atari games with varying complexity, dynamics, visual
features and rewards

e Compare with prior state-of-the-art gaze-augmentation LfD
methods

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.



Atari-HEAD: Atari Human Demonstrations and Gaze Dataset

- Human gaze and demonstration data for 20 Atari
Games

- Eyelink 1000 eye tracker at 1000Hz

-  Total data worth 117 hours collected with 4 users

Zhang, R., C. Walshe, Z. Liu, L. Guan, K. S. Muller, J. A. Whritner, L. Zhang, M. M. Hayhoe, and D. H. Ballard. “Atari-
head: Atari human eye-tracking and demonstration dataset.” AAAI, 2020.



CGL loss
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CGL improves performance for 3 imitation
learning algorithms

IL Algorithm % Improvement with CGL

BC 160%

BCO 343%

TREX 390%



CGL outperforms existing Gaze-augmentation methods for Imitation Learning
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Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.
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CGL Agents attend to Visual Features from
Human's Overt Attention

(a) Input image (b) Human (c) T-REX (d) T-REX+CGL

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.



Visualizing learned Agent Policies

BC AGIL BC +CGL

Does not learn to actively Shoots the spider when it Actively goes and
shoot the spider comes directly above the agent shoots the spider



Visualizing CGL agent policies

o AGIL

Unable to hop over the skull Unable to hop over the skull Learns to hop over the skull and
advance ahead in the game



Understanding the Performance Gains of CGL

Can CGL reduce causal confusion for Imitation Learning methods?

Correct Causal Identification

P. de Haan, D. Jayaraman, & S. Levine. Causal confusion in imitation learning. NeurlPS 2019.



CGL reduces causal confusion compared to baseline BC algorithm

Confounded - y
images with . m
correlated past o -
actions as part of :
the state space

(a) Breakout (b) Asterix (c) Demon Attack (d) Freeway

P. de Haan, D. Jayaraman, & S. Levine. Causal confusion in imitation learning. NeurlPS 2019.



CGL reduces causal confusion compared to baseline BC algorithm

Algorithm tested with Performance reduction with
CGL suffers less with confounded images confounded images (lower is

better)

confounded data and
hence reduces causal

confusion compa red to BC BC+CGL [confounded] v/s BC+CGL
[original]

BC [confounded] v/s BC [original] 47.8%

-34.0 %

BC+CGL outperforms BC trained with confounded data by 571%

Saran, A., R. Zhang, E. S. Short, and S. Niekum2020. Efficiently guiding imitation learning algorithms with human gaze. AAMAS 2021.



Implicit human feedback: Facial Reactions

» Occurs naturally
» [s not necessarily intended to influence behavior

« (Can be used with no additional burden on user




EMPATHIC: Learning from implicit feedback

TIME LEFT

Y. Cui, Q. Zhang, A. Allievi, P. Stone, S. Niekum, and W. Knox.

Steps of EMPATHIC:

The EMPATHIC Framework for Task Learning from Implicit Human Feedback.

Conference on Robot Learning (CoRL), November 2020.

Incentivize human participant

Collected reaction data under
known GT reward (or other task
statistic of interest)

Learn human reward model (or
other task statistic)

Transfer to new tasks


https://arxiv.org/abs/2009.13649

Task Domains

Robotaxi

Robotic Trash Sorting

34



How hard is this problem?

Is there enough information to learn from implicit human feedback?
e Human proxy test

e Facial annotation data
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Avg. T | p-value | O E B ﬂ [
569 | .004  om B Bmm =
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AnnotationTool _Xo) x;

frame_number head_nod head_shake eyebrow_raise eyebrow_frown

923/5436 OFF OFF | | OFF OFF

sentiment positive negative

Bulk Frame Annotation Apply Annotation to Bulk Frames
start index 601.0 -
end index: 923.0 -
< prev frame next frame >

Import Existing Annotations Export Annotations




Analyzing Annotated Facial Gestures

eyebrow-frown
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Learning the Reaction Mapping
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Reward Ranking Prediction Performance

Kendall's T Value

Reaction mapping trained w/ auxiliary task

1.0

0.5

0.0

-0.5

-1.0

1

<

9

11

4

14

6 7 3

Participant IDs

2

12

8

13

15

16

17

Reaction mapping trained w/o auxiliary task

10

39



How to leverage the learned mapping from Robotaxi?

Binary classification o
Positivity score: P(+) over

entire trajectory

Ranking by Avg. P(+)

30



EMPATHIC: Learning from implicit feedback — deployment

Reward:0




Subject ID

Robotic Trash Sorting Performance
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