CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

Active reward learning and teaching



Difficulties in standard Inverse Reinforcement Learning

No demonstrations of “bad” actions

Therefore, difficult to discriminate between actions that are bad and actions that
were simply not demonstrated

Demonstrations may be optimal (from the optimal policy) without being informative

Human may not give informative demonstrations since they don’t know what the
robot already knows / doesn’t know or how its learning algorithm works



Solution: Active Inverse Reinforcement Learning

Robot uses knowledge of its current beliefs to generate a query trajectory that will
elicit optimally informative feedback from the human (in expectation)

Human segments the trajectory into good and bad segments
Robot updates its beliefs accordingly
Can be significantly more efficient than requesting a demo from user, can provide

direct knowledge about “bad” situations, and requires little effort from human

Cui Y, Niekum S. Active reward learning from critiques. IEEE international conference on robotics
and automation (ICRA). 2018.



Scenario: HSR is learning how to navigate to
the shelf without interrupting the human that is o
watching TV.













Bayesian Inverse Reinforcement Learning

Likelihood

Reward functions

Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. Urbana, 51(61801), 1-4.



Information Gain Estimation from Reward Function Distribution
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Information Gain Estimation from Reward Function Distribution
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e Expected Information Gain: Reward functions

G*(si,ai) = G(DT U (si,a;) | Be(R)) = Pr(a; € O(s;) | Be(R))D(Be'(R)||Be(R))
G~ (si,a;) = G(D™ U (si,a;) | Be(R)) = Pr(a; ¢ O(s;) | Be(R))D(Be'(R)||Be(R))




Single (s,a) queries
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Fig. 2: An illustrative example in a 5x5 gridworld demonstrating
actions with maximum expected information gain explore unseen
features. Each grid cell has only one of the 5 features. (green: average
rewards - darker is larger; cyan: known good actions; gray: known
bad actions; orange: actions with max expected info gain)

Iteration | Expected Information Gain | Entropy | Policy Loss
0 - - 60%
1 4.2753338603 231.58 32%
2 42614594772 159.88 28%
3 49553412646 151.70 24%
4 5.2887902710 150.42 0%




Likelihood
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Task: place an object relative to two objects on a tabletop
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Results: Active IRL Policy Loss
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Fig. 9: Average Performance on Place-An-Object Task



Alternative: actively improve VaR instead of info gain

4 1 —— ActiveVaR = ARC
k —+ Random Algorithm | Avg, Time (5)
ko) Random 0.0015
S 21 ActiveVaR 0.0101
ARC 865.6993
0 =5
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Number of Trajectory Queries

(a) Averaged policy losses (b) Timing for one iteration of each algorithm

Figure 3: Active critique queries in 8 x8 gridworlds with 48 features.

Brown DS, Cui Y, Niekum S. Risk-aware active inverse reinforcement learning.
Conference on Robot Learning (CoRL). 2018.



Is this an instantiation of CIRL?



What might this look like for preferences?



Informative demonstrations

More informative

Less informative



Machine teaching

For inverse RL:

In general:
ng n TeachingCost(D) n}Din TeachingCost(D)
s.t.  TeachingRisk(f) < e s.t. Loss(w", W) < ¢
0 = MachineLearning(D) = RL(W)
w = IRL(D)
where:

Loss(w*, W) = W™ (jire — f1)

TeachingCost(D) = |D|

Brown DS, Niekum S. Machine teaching for inverse reinforcement learning: Algorithms and
applications. Proceedings of the AAAI Conference on Artificial Intelligence. 2019.



Behavioral Equivalence Classes (BEC)

BEC(7) =
{w € R" | 7 is optimal under R(s) = w’ ¢(s)}.

Theorem 1. (Ng and Russell 2000) Given an MDP, BEC()
is given by the following intersection of half-spaces:

w (ul ) — pl) >0,
Va € argn}gﬁQ*(s,a’),b cAseS

Corollary 1. BEC(D|r) is given by the following intersec-
tion of half-spaces:

wl(plsa) — 0y >0, V(s a) € D,b e A
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Set Cover Optimal Teaching (SCOT)

Over-complete Under-complete Info-optimal
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Submodular = greedy algorithm approximately optimal!



Information-optimal teaching efficiency
vs. [Cakmak and Lopes 2012]

Ave. number of (s, a) pairs  Ave. policy loss  Ave. % incorrect actions ~ Ave. time (S)

UVM (10?) 5.150 1.539 31.420 567.961
UVM (109) 6.650 1.076 19.568 1620.578
UVM (107) 8.450 0.555 18.642 10291.365
(__Scort 17.160 0.001 0.667 0.965 )

More accurate AND several orders of magnitude more efficient



Bayesian Info-Optimal Inverse Reinforcement Learning (BIO-IRL)

P(D|R) o Pinto(D|R) - H P((s,a)|R)
(s,a)eD

Pinto(D|R) o< exp(—A - infoGap(D, R))

Prefer rewards that imply expert is both behaviorally optimal
and (approximately) information-optimal



Bayesian Info-Optimal Inverse Reinforcement Learning (BIO-IRL)

P(D|R)  Puw(PIR) - || P((s,a)|R)
(s,a)eD

Pinto(D|R) o exp(—A - infoGap(D, R))
!

N-demo remaining volume Ideally: purple / (red + blue)

N-optimal remaining volume Approx: greedy hyperplane matching + angular distance

Intersection of volumes

Prefer rewards that imply expert is both behaviorally optimal
and (approximately) information-optimal



Example results: I.I.D. vs. information-optimality assumptions
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Efficiency gain: l.I.D. vs. information-optimality assumptions
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