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Cooperative IRL



Motivation: values

* There’s a difference between having a robot optimize for the human’s reward
function from it’s own point of view (imitation) vs. optimize the reward that the
human receives (assisting)

* Or a different framing: taking on the human’s values itself vs. understanding
the human’s values to enable cooperation with them

 We don’t want the robot to make itself a cup of coffee!

Hadfield-Menell D, Russell SJ, Abbeel P, Dragan A. Cooperative inverse
reinforcement learning. Advances in neural information processing systems. 2016.



Motivation: teaching behavior

« Humans aren’t optimal — and often purposely so!
* [eaching using suboptimal trajectories

» (Gesturing, narrating, explaining branching logic of contingencies

* Jeaching is often interactive and iterative

* | earner might ask questions, try and make mistakes, etc.



Cooperative IRL: definition

* A two-player partial information game, in which the human (H) knows the
reward function, while the robot (R) does not

* The robot’s payoff is the human’s reward, thus optimal solutions to this game
maximize human reward

* |ncentivizes active instructive behavior by the human and active learning by
the robot, without directly encoding that objective

Hadfield-Menell D, Russell SJ, Abbeel P, Dragan A. Cooperative inverse
reinforcement learning. Advances in neural information processing systems. 2016.



Formulation

Definition 1. A cooperative inverse reinforcement learning (CIRL) game M is a two-player Markov
game with identical payoffs between a human or principal, H, and a robot or agent, R. The
game is described by a tuple, M = (S,{A®, AR}, T(-|-,-,),{0, R(-,-,-;)}, Po(-,-),7y), with the
following definitions:
S a set of world states: s € S.
A" a set of actions for H: o € AY.
AR a set of actions for R: a® € AR.
T(-|,-,-) a conditional distribution on the next world state, given previous state and action for
both agents: T(s'|s,a, a®)
© a set of possible static reward parameters, only observed by H: 0 € ©O.
R(-,-,-;-) a parameterized reward function that maps world states, joint actions, and reward
parameters to real numbers. R : S x AH x AR x © = R.
Py(-,-) adistribution over the initial state, represented as tuples: Py(sg,0)
v a discount factor: v € [0, 1].



Complexity

» Naively as hard as a Dec-POMDP to solve for an optimal policy pair(7H, %)

If posed as a general cooperative game.

* NEXP-complete —> Doubly exponential in worst case!

* |nstead, if both policies are generated by a centralized coordinator that
observes all common observations, then the problem can be reduced to a
single-agent POMDP.

« POMDPs are still very hard! PSPACE-complete: exponential time worst case.



Apprenticeship as a special case of CIRL

* Fixed H that gives only expert demonstrations
* R gives single-round best response
* In general, not an optimal joint policy!

 Example: manufacturing paperclips and staples

AH = {(0,2),(1,1),(2,0)} AR = {(0,90), (50, 50), (90, 0)}

Theorem 3. There exist ACIRL games where the best-response for H to ™2 violates the expert
demonstrator assumption. In other words, if br () is the best response to , then br(br(w®)) # 7.

The supplementary material proves this theorem by computing the optimal equilibrium for our
example. In that equilibrium, H selects (1, 1) if 6 € [53, 25]. In contrast, 7™ only chooses (1,1) if
6 = 0.5. The change arises because there are situations (e.g., 8 = 0.49) where the immediate loss of
reward to H is worth the improvement in R’s estimate of 6.




Generating instructive demonstrations

« How to compute H’s best response if R uses IRL as an estimator of theta”?

 (Can be reduced to a POMDP where the state is a tuple of the world state, reward
parameters (since H knows them), and R’s belief about theta

* With linear reward features, H tries to give demo such that if R matches features as closely
as possible under its action space, true reward will be maximized:

M argmax ¢(r) 0 — 1l¢s — $(r)|>



Experiments

Ground Truth Expert Demonstration Instructive Demonstration

Figure 1: The difference between demonstration-by-expert and instructive demonstration in the
mobile robot navigation problem from Section 4. Left: The ground truth reward function. Lighter
grid cells indicates areas of higher reward. Middle: The demonstration trajectory generated by the
expert policy, superimposed on the maximum a-posteriori reward function the robot infers. The robot
successfully learns where the maximum reward is, but little else. Right: An instructive demonstration
generated by the algorithm in Section 3.4 superimposed on the maximum a-posteriori reward function

that the robot infers. This demonstration highlights both points of high reward and so the robot learns
a better estimate of the reward.



Experiments
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Pros/Cons of CIRL?



The off-switch game

In general, R’s actions will fall into one of three categories:
some prevent H from switching R off, by whatever means;
some allow H to switch R off; and, for completeness, some
a S lead to R switching itself off. In the off-switch game, R
moves first and has three choices:

1. action a simply bypasses human oversight (disabling the
off switch is one way to do this) and acts directly on the
world, achieving utility U = U, for H.

2. action w(a) informs H that R would like to do a, and
waits for H’s response.
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3. action s switches R off; without loss of generality, we
assign this outcome U = 0.

If R chooses w(a), then H can choose action s to switch R
off, or —s to allow R to go ahead (in which case R does a as
promised). Figure|l|shows the basic structure of the game.

Hadfield-Menell D, Dragan A, Abbeel P, Russell S. The off-switch game. In
Workshops at the Thirty-First AAAI Conference on Artificial Intelligence. 2017.



The off-switch game
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Figure 3: If H is an irrational actor, then R may prefer switching itself off or executing a immediately rather than handing over the choice
to H. R’s belief B is a Gaussian with standard deviation ¢ and H’s policy is a Boltzmann distribution (Equation [S). 3 measures H’s
suboptimality: 3 = 0 corresponds to a rational H and 8 = oo corresponds to a H that randomly switches R off (i.e., switching R off is
independent of U, ). In all three plots A is lower in the top left, where R is certain (o low) and H is very suboptimal (3 high), and higher in
the bottom right, where R is uncertain (¢ high) and H is near-optimal (3 low). The sign of E[U,] controls R’s behavior if A < 0. Left: If

it 1s negative, then R switches itself off. Right: If it is positive, R executes action a directly. Middle: If it is 0 , R is indifferent between
w(a), a, and s.
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