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Improving human modeling assumptions



Equally-weighted markovian rewards?

Kim, Changyeon, et al. "Preference transformer: Modeling human preferences using
transformers for rl." arXiv preprint arXiv:2303.00957 (2023).
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Preference transformer
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Kim, Changyeon, et al. "Preference transformer: Modeling human preferences using
transformers for rl." arXiv preprint arXiv:2303.00957 (2023).



Preference transformer
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Some history: RNNs

https://www.geeksforgeeks.org/introduction-to-recurrent-neural-network/



Transformers
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https://jalammar.github.io/illustrated-transformer/



Preference transformer
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Figure 2: Overview of Preference Transformer. We first construct hidden embeddings {x; } through
the causal transformer, where each represents the context information from the initial timestep to
timestep t. The preference attention layer with a bidirectional self-attention computes the non-

Markovian rewards {7;} and their convex combinations {z; } from those hidden embeddings, then
we aggregate {2, } for modeling the weighted sum of non-Markovian rewards ) _, w;7;.




Preference transformer: results

ent data collection schemes. For reward learning, we select queries (pairs of trajectdry segments)
uniformly at random from offline datasets and collect preferences from real human trainers (the au-
thors).” Then, using the collected datasets of human preferences, we learn a reward function and



Preference transformer: results
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Preference transformer: results
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How bad is irrationality?

Chan, Lawrence, Andrew Critch, and Anca Dragan. "Human irrationality: both bad and good
for reward inference." arXiv preprint arXiv:2111.06956 (2021).



A general model for irrationality

Assume human is a planner with irrationalities being deviations from the Bellman Equation:

Myopic Discounting

Hyperbolic Discounting

\ N\
Visi(s) = max 3 Poa(s) (Fo(s,a,8') +7Vi(s))
s'eS "\ .

Optimism /Pessimism Extremal Bias
[llusion of Control




Types of irrationality

Modify max operator: Boltzmann rationality

Vit1(s) = Boltz" Z P, o(s") (ro(s,a,s") +~vVi(s"))

s'eS

where Boltz’ (x) = Y, ;€% /3" P



Types of irrationality

Modify transition dynamics: lllusion of control

Vigi(s = Iax Z (ro(s,a,s") +7Vi(s))
s'eS

where nga(s’) = (Ps4(s"))" / Zs”ES (Ps,a(s"))"



Types of irrationality

Modify transition dynamics: Optimism / pessimism

where PY (S') o Ps’a(sl)ew(re(s,a,s’)+’YV7;(s’))

S,a



Types of irrationality

Modify reward: Prospect bias

Viri(s) = max Y Pua(s') (F(ro(s,,5) +1Vi(s")




Types of irrationality

Modify relation between reward+future value: Extremal

/
V.. 1(8) = max P, .(s'") max ro(8,0,5)
+1( ) p SIEG:S , ( ) {(1—(1)7‘9(8,&,8/)4—&%(8’)



Types of irrationality
Modify discounting

* Myopic discount (standard discounting with gamma)
 Myopic value iteration (only H steps performed)

* Hyperbolic discounting:

7'9 s,a,s")+ V;i(s')
1+ kV;(s')

s’'eS



Effects of irrationality on Bayesian inference
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Fig. 3: The log loss (lower = better) of the posterior as a function of the parameter we vary for each irrationality type, on the random MDP
environments. For the irrationalities that interpolate to the rational planner, we denote the value that i1s closest to rational using a dashed
vertical line. Every irrationality except Prospect Bias all have parameter settings that outperform the rational planner. The error bars show the
standard error of the mean, calculated by 1000 bootstraps across environments.



Irrationality can be good (if correctly modeled)!

Rational Human

High speed preference

Low speed preference High speed preference

Driving Scenario: Merging Our experiments were performed
in a simple merging environment (Fig. [I). In it, the human
wants to merge into the right lane while trying to maintain
its 1.2 forward speed. In addition to the human car, the right

lane contains two constant velocity cars, traveling at 0.8 speed.

The features of this environment are composed of a squared
penalty for deviating from 1.2 forward speed, features for the
squared distances to the medians of each of the lanes, a feature
for the minimum squared distance to any of the medians of
the lanes, and a smooth collision feature.

Irrational (Myopic) Human

Low speed preference



Unmodeled irrationality Is very bad
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Fig. 6: (a) A comparison of reward inference using a correct model of the irrationality type, versus always using a Boltzmann-rational model
(8 = 10), on the random MDPs (left) and the car environment (right). The impairment due to model misspecification greatly outweighs the
variation 1n inference performance caused by various irrationalities. The error bars show the standard error of the mean, calculated by the
bootstrap across environments. (b) An example of why assuming Boltzmann is bad when the ground truth human i1s Myopic in the gridworld
environment - the Boltzmann rational agent would take the trajectory depicted only if the reward at the bottom was not much less than the
reward at the top. A myopic human with n < 4, however, only "sees" the reward at the bottom. Consequently, inferring the preferences of
the myopic agent as if it were Boltzmann leads to poor performance in this case.



Approximate irrationality models might be enough
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Fig. 7: The log loss (lower = better) of various models under parameter misspecification. Each x-axis shows the parameter that the robot
assumes. The orange line represents the performance when the robot makes the faulty assumption that the human 1s Boltzmann-rational. In
many cases, the robot perform better than by assuming Boltzmann-rational just by getting the type of the planner correct, even if they don’t
get the exact parameter correct. The error bars show the standard error of the mean, calculated by the bootstrap across environments.



Approximate irrationality models might be enough
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Fig. 8: The log loss (lower = better) of two myopic humans under
type misspecification. On the left, the human performs myopic value
iteration (Myopic h), but the robot assumes the human has a myopic
discount rate v (Myopic 7y). On the right, the human has a myopic
discount rate -y but the robot assumes myopic value iteration. However,
in both cases, this leads to better inference than assuming Boltzmann-

rationality.



