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Open problems and fundamental limitations of RLHF

Casper, Stephen, et al. "Open problems and fundamental limitations of reinforcement learning 
from human feedback." arXiv preprint arXiv:2307.15217 (2023).



Challenges: Human feedback

• Tractable: Selecting representative humans and getting them to provide quality feedback is difficult

• Tractable: Some evaluators have harmful biases and opinions

• Tractable: Individual human evaluators can poison data

Misaligned Humans: Evaluators may Pursue the Wrong Goals

Good Oversight is Difficult
• Tractable: Humans make simple mistakes due to limited time, attention, or care

• Tractable: Partial observability limits human evaluators

• Fundamental: Humans cannot evaluate performance on difficult tasks well

• Fundamental: Humans can be misled, so their evaluations can be gamed

Data Quality
• Tractable: Data collection can introduce harmful biases

• Fundamental: There is an inherent cost/quality tradeoff when collecting human feedback

• Tractable: Individual human evaluators can poison data

Limitations of Feedback Types
• Fundamental: RLHF suffers from a tradeoff between the richness and efficiency of feedback types 


• Comparisons

• Scalar feedback

• Corrections

• Language



Addressing: Human feedback

•Providing feedback with AI assistance


•Fine-grained feedback


•Process-based supervision


•Translating natural language specifications into a reward model


•Learning rewards from demonstrations



Challenges: Reward model

• Fundamental: An individual human’s values are difficult to represent with a reward function

• Fundamental: A single reward function cannot represent a diverse society of humans

Problem Misspecification

Reward Misgeneralization and Hacking
• Fundamental: Reward models can misgeneralize to be poor reward proxies, even from correctly-labeled training data 

• Fundamental: Optimizing for an imperfect reward proxy leads to reward hacking

Evaluating Reward Models

• Tractable: Evaluating reward models is difficult and expensive



Addressing: Reward model

•Using direct human oversight


•Multi-objective oversight


•Maintaining uncertainty over the learned reward function



Challenges: Policy learning

• Tractable: It is (still) challenging to optimize policies effectively

• Tractable: Policies tend to be adversarially exploitable

Robust Reinforcement Learning is Difficult

Policy Misgeneralization
• Fundamental: Policies can perform poorly in deployment even if rewards seen during training were perfectly correct

• Fundamental: Optimal RL agents tend to seek power

Distributional Challenges

• Tractable: The pretrained model introduces biases into policy optimization

• Tractable: RL contributes to mode collapse

Challenges with Jointly Training the Reward Model and Policy

• Tractable: Joint training induces distribution shifts

• Tractable: It is difficult to balance efficiency and avoiding overfitting by the policy



Addressing: Policy learning

•Aligning LLMs during pretraining


•Aligning LLMs through supervised learning



RLHF is Not All You Need: Complementary Strategies for Safety

•Robustness


•Risk assessment and auditing


• Interpretability and model editing



Auditing RLHF’d systems



Auditing RLHF’d systems


