CS 690: Human-Centric Machine Learning
Prof. Scott Niekum

RLHF without reward modeling



Part 1: Direct Preference Optimization

Do we really need reward inference for RLHF?

Slide credits: Archit Sharma, Rafael Rafailov, Eric Mitchell
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RLHF: Learning rewards from preferences

: _ N R |
Feedback comes as preferences over model samples: D — {:B s Yoy s Yi }
How do we get a reward function from this data? Prompt \ Dispreferred response

Preferred response
Bradley-Terry Model connects scores (rewards?) to preferences:

Unobserved implicit score assigned to each choice

N

pla = b) = o(s(a) — s(b))

[Rank Analysis of Incomplete Block Designs. Bradley & Terry, 1952.]



https://www.jstor.org/stable/2334029

RLHF: Learning rewards from preferences

: _ N R |
Feedback comes as preferences over model samples: D — {x s Yoy s Yi }
How do we get a reward function from this data? Prompt \ Dispreferred response

Preferred response
Bradley-Terry Model connects scores (rewards?) to preferences:

Unobserved implicit score assigned to each choice

N

pla = b) = o(s(a) — s(b))
Train the reward model by minimizing negative log likelihood:

LR(¢7 D) — _E(m,yw,yz)ND [lOgU(T¢(£B, yw) _ Tqb(xa yl))]
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Now we have a reward model r, representing goodness according to humans (allegedly)

So we learn a policy 7y achieving high reward while staying close to original model r,¢
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RLHF: Learning a policy that optimizes reward

Now we have a reward model r, representing goodness according to humans (allegedly)

So we learn a policy 7y achieving high reward while staying close to original model r,¢

<

max By D,y (y12) |7 (2, Y)

— BDke o (y|2)|| et (y| )

o \

Sample from policy Want high reward ... ... but keep KL to original model small!

Avoid outputs where our reward model is inaccurate (it was trained on 7, outputs!)

Optimize the whole thing with PPO (off-the-shelf RL algorithm)

[Proximal Policy Optimization Algorithms, Schulman, Wolski, Dhariwal, Radford, Klimov, 2017]
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Traditional RLHF is complex
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[Secrets of RLHF in Large Language Models Part |: PPO, Zheng, et al. 2023]
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Direct Preference Optimization

High-level punchline
[t we parameterize our reward model correctly...

...we can extract the optimal policy for our learned reward
model in closed form, with no additional training

The trick: use a direct correspondence between optimal
policy and reward model!

m(y|r) < r(z,y)




Direct Preference Optimization: Putting it together

Intractable closed-form optimal RLHF policy

i 2) = 5ty [ 2) e ( (o)

Every reward function 1 induces an optimal policy T

Another view of this identity /\
(y | 2)

(s , -
rx(z,y) = Blog — ] o) - Blog Z(T)  faume overallsequences)
re

Every policy 7 is the optimal policy for some induced reward function 7“;:

Key idea of DPO: train the policy 7 so that r_ fits the human preference data!




Direct Preference Optimization: Putting it together

Fortunately, the reward modeling loss only depends on differences in rewards:
T’(ZL', yw) o T(SI}, yl)

For two different responses, the induced reward difference is:

76 (Yuw | T) 5o T (Y1 | )

1o (xayw) — Ty (xayl) — 610g

7"-ref(yw ‘ ZE) 7Tlfef(yl | $)
N— — N——
induced reward fory, . induced reward for y,

The intractable partition function cancels out when we
take the difference (i.e., it only depends on the prompt)!

LbpPo (7‘-97 D) — 43(aj,yw,yl)ND [lOg O-<TW9 ($7 yw) — I'm ($, yl))]

DPQO: a simple classification loss for optimizing the RLHF objective!
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The big picture of DPO

In other words, skip the
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Results: Overview

Summarization helpfulness win rates vs ground truth Dialogue helpfulness win rates vs ground truth
0.7

B DPO [ Bestof 128 B PPO B PFT B SFT B DPO P Bestof128 B PFT | Base

0.6 ’
0.5 :

0.4 ! ) §

0.2 A

DPO performs similarly to other RL-based baselines, while being
substantially simpler, computationally cheaper, and stabler




trong models trained with DPO
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Part 2: Contrastive Preference Learning

Can the DPO trick work for sequential settings?

Slide credits: Joey Hejna



Models of Human Preference for Learning Reward Functions

W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, Alessandro Allievi

Suboptimal segment Optimal segment

GOAL GOAL

.
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Models of Human Preference for Learning Reward Functions

W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, Alessandro Allievi

Regret-based Model of Preferences:

exp ), A*(s;, a")
exp ), A*(st, aft) +exp ), A*(s7,ar)

Py(ct>07) =

...but no efficient algorithm to learn from it!
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exp ), A*(st, aif) +exp ), A*(s;, ap)

PA*(U+ > O'_) —



A Naive Approach

mjn— - D[logPA(0+ > 0_)] min—[E D[eA(S’“)logn(a | S)]

1. Advantage Learning 2. Policy Extraction

Problem: (Ziebart 2010)
r*(a|s) = e (50— JeA*(S"’)da =]

To be optimal, our learned advantage must be normalized.



Solution: Just learn 7
r*(als) = e Y = logr*(a|s) = A*(s, a)

exp ), logrz*(a,"| Sj)
exp ). logr*(a;t|s|) +exp ) logn*(a; | s))

a9
+
Y
q|
|

Contrastive Preference Learning

| exp ), logn(a;"| S:—)
min—[Ep | log

7 exp ), logn(a;t| S;l_) +exp ), logn(a; |s)




Contrastive Preference Learning

e

> ) logme(azlsy) - @

mg(als)
Regret-based Preferences Contrastive Learning
eZG+ A*(s¢,af)
Pylot >07] = Lepy, = —E|log Piogr, [0 > 7]

(ot 4T [ — L —



Theoretical Properties

Prop 1. CPL always learns the optimal policy for some reward function.

Idea: show that using the normalized advantage function as the reward function
results 1n the same policy.

Theorem 1. Given unbounded regret-based comparison data, CPL converges to the
optimal policy.

ldea: Given 1dentifiability of regret-based preferences, CPL loss can equal zero.
This implies the advantage functions are the same.



Regularization

Problem: CPL can place high-likelihood on OOD actions.

Let D = {(a, > @), (a, > a)))

2
/ Then, minimum of CPL loss 1s underspecitied:
.. 1
s - a, 10g1st1c<10g7r(a1 | S) — logﬂ(az\s)) =3
\ a; 0.5, 0.5, 0] and [0.01, 0.01, 0.98| both

minimize the CPL Loss. Our null space 1s too big!



Regularized Contrastive Preference Learning

| exp ), logn(a;"| S:_)
min—[Ep | log

Prop 2. 0 < A < 1 makes the regularized CPL loss lower when a
higher weight 1s put on 1n-distribution actions.



Does CPL work as well as traditional RLHEF?
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CPL vs. DPO

DPO 1s a special case of CPL, where we learn a contextual bandit policy 1n the
KL-constrained setting



