CS 690: Human-Centric Machine Learning

Prof. Scott Niekum

RLHF without reward modeling

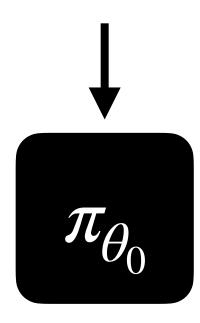
Part 1: Direct Preference Optimization

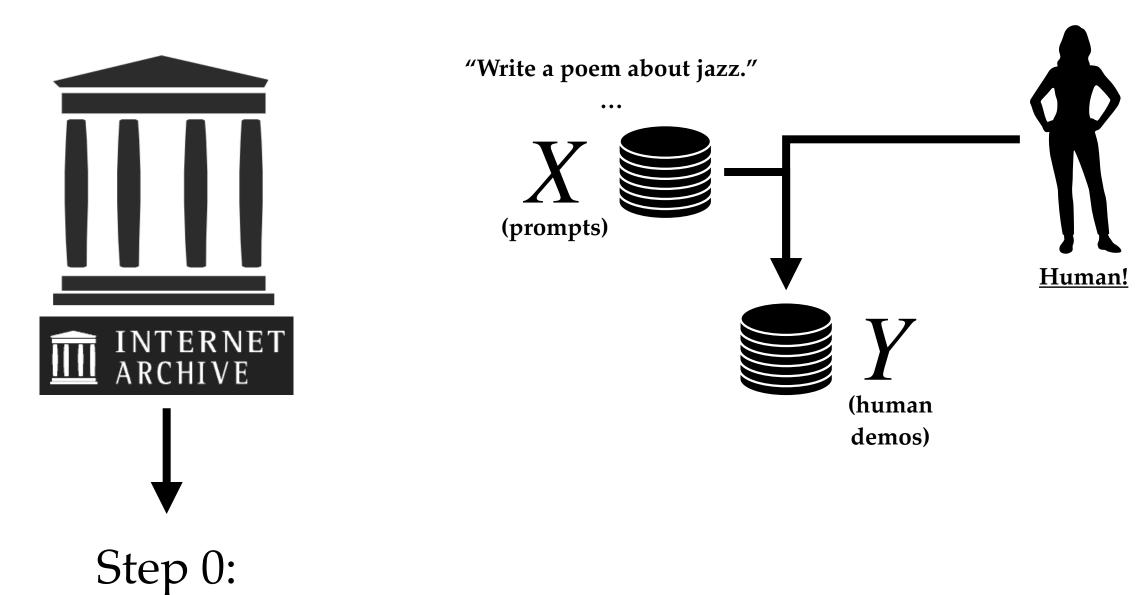
Do we really need reward inference for RLHF?

Step 0:

Unsupervised pre-training

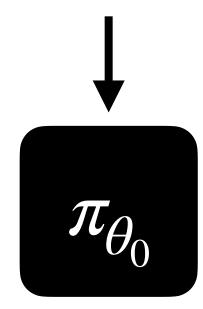
(tons of data; >1T tokens)

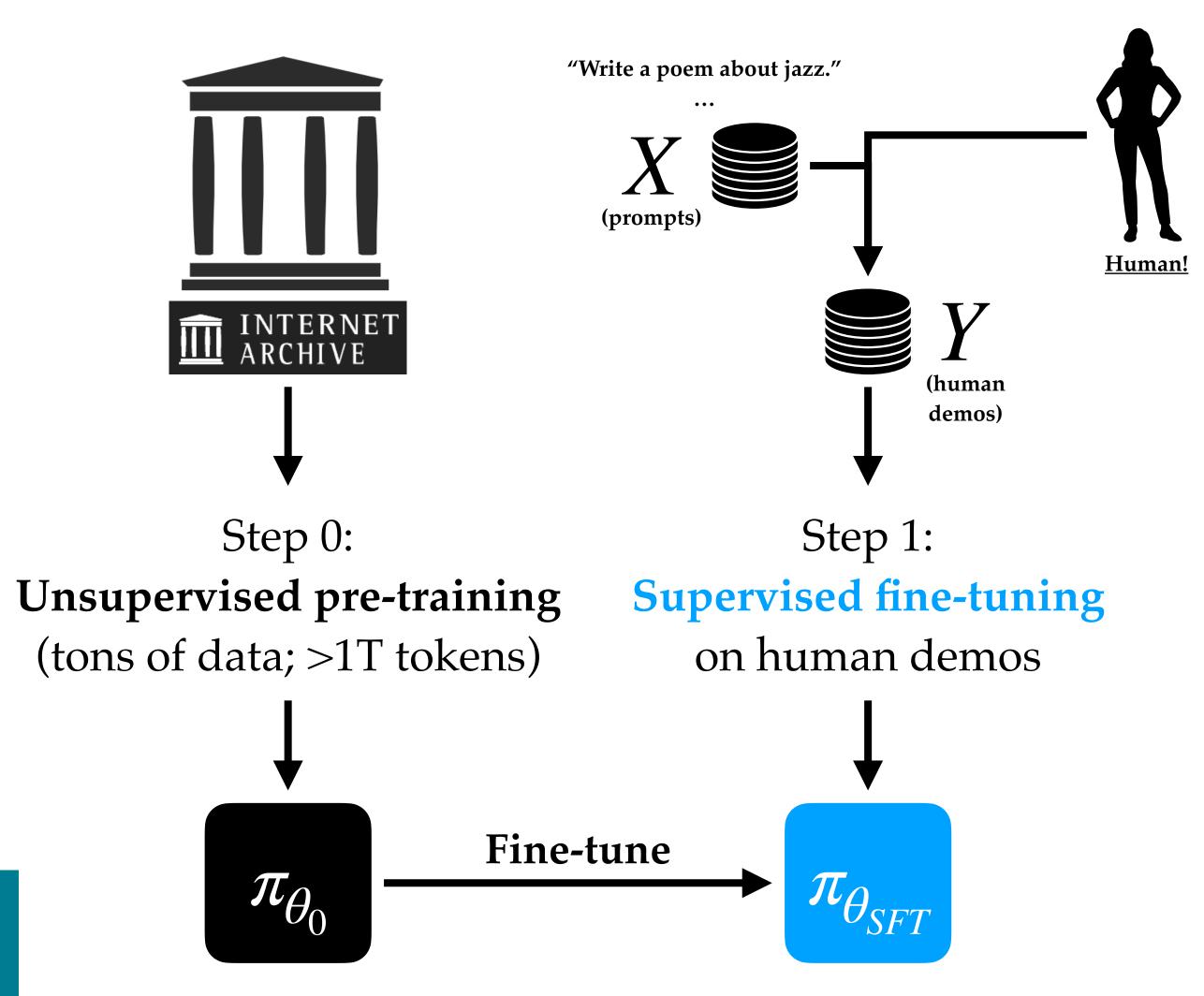


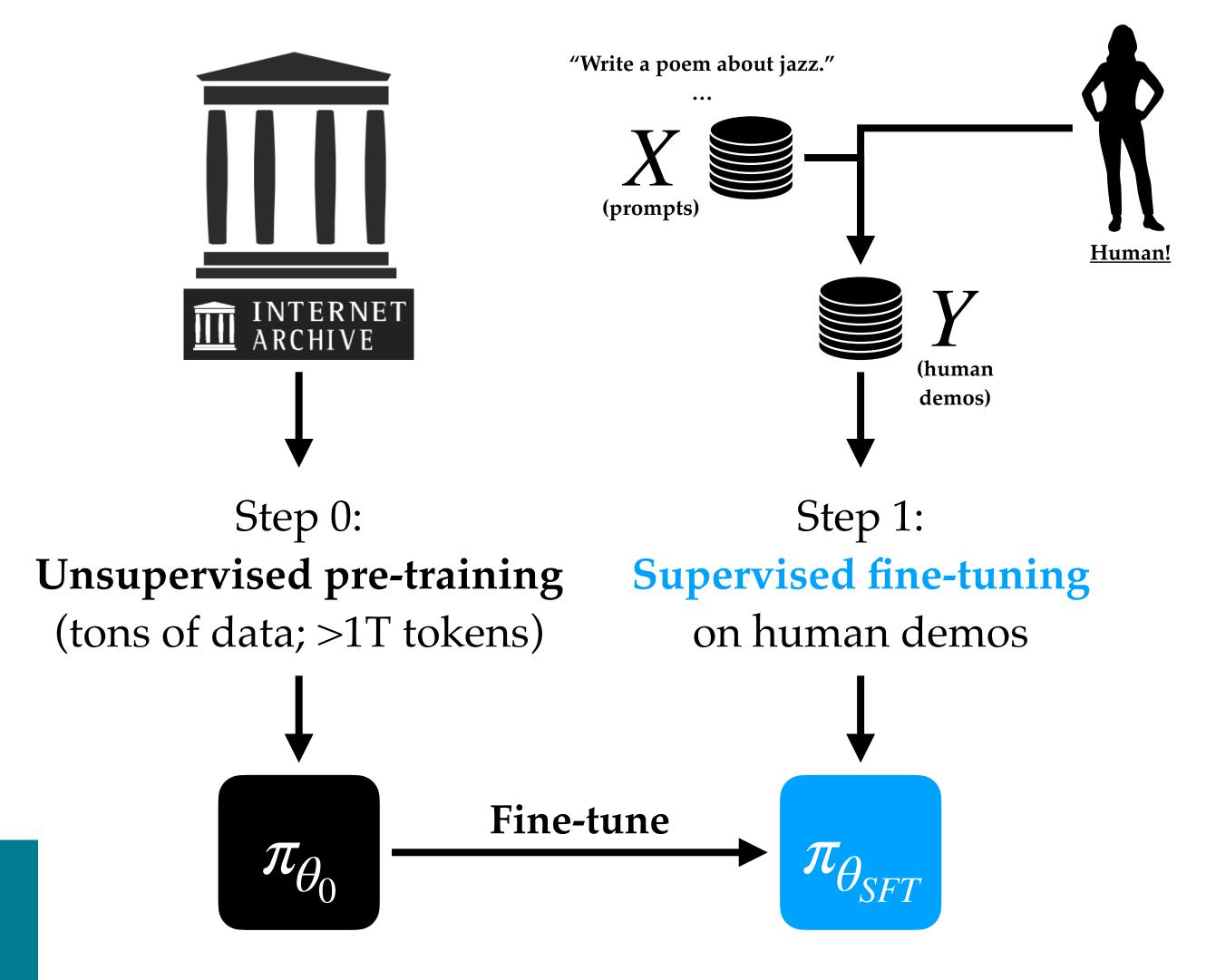


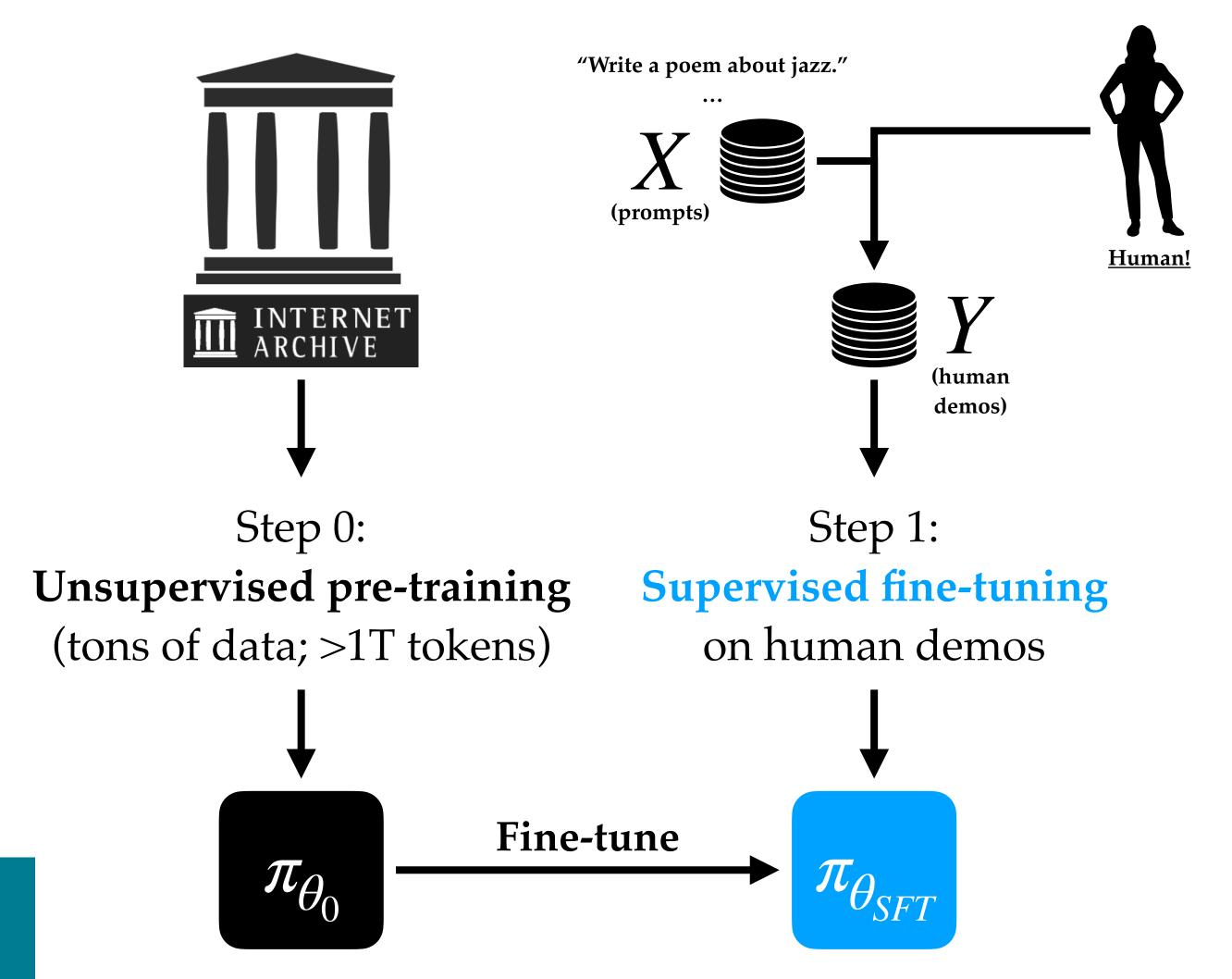
Unsupervised pre-training

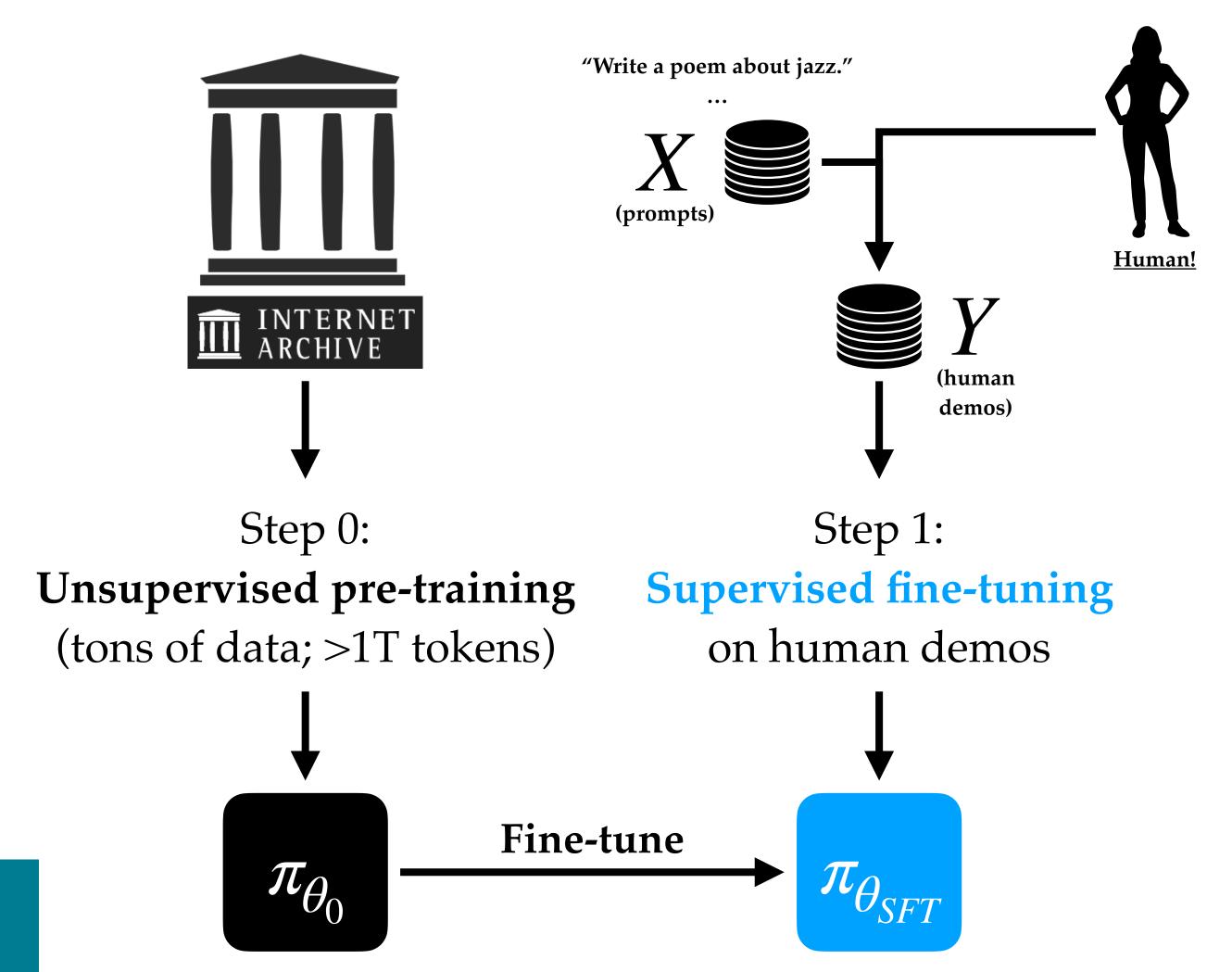
(tons of data; >1T tokens)





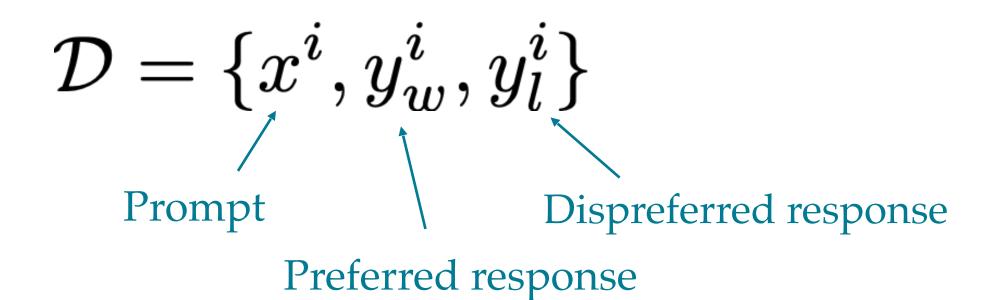






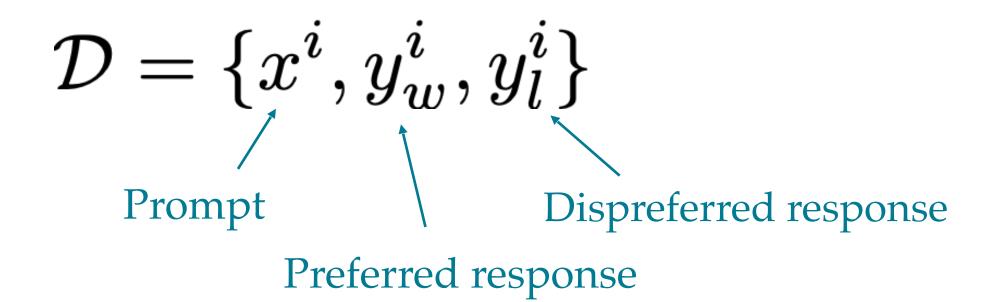
- Scale annotation
- Exceed human performance

Feedback comes as preferences over model samples:



Feedback comes as preferences over model samples:

How do we get a reward function from this data?



Feedback comes as preferences over model samples:

 $\mathcal{D} = \{x^i, y^i_w, y^i_l\}$ Prompt Dispreferred response

How do we get a reward function from this data?

Preferred response

Bradley-Terry Model connects scores (rewards?) to preferences:

Unobserved implicit score assigned to each choice

$$p(a \succ b) = \sigma(s(a) - s(b))$$

Feedback comes as preferences over model samples:

 $\mathcal{D} = \{x^i, y_w^i, y_l^i\}$ Prompt Dispreferred response

How do we get a reward function from this data?

Preferred response

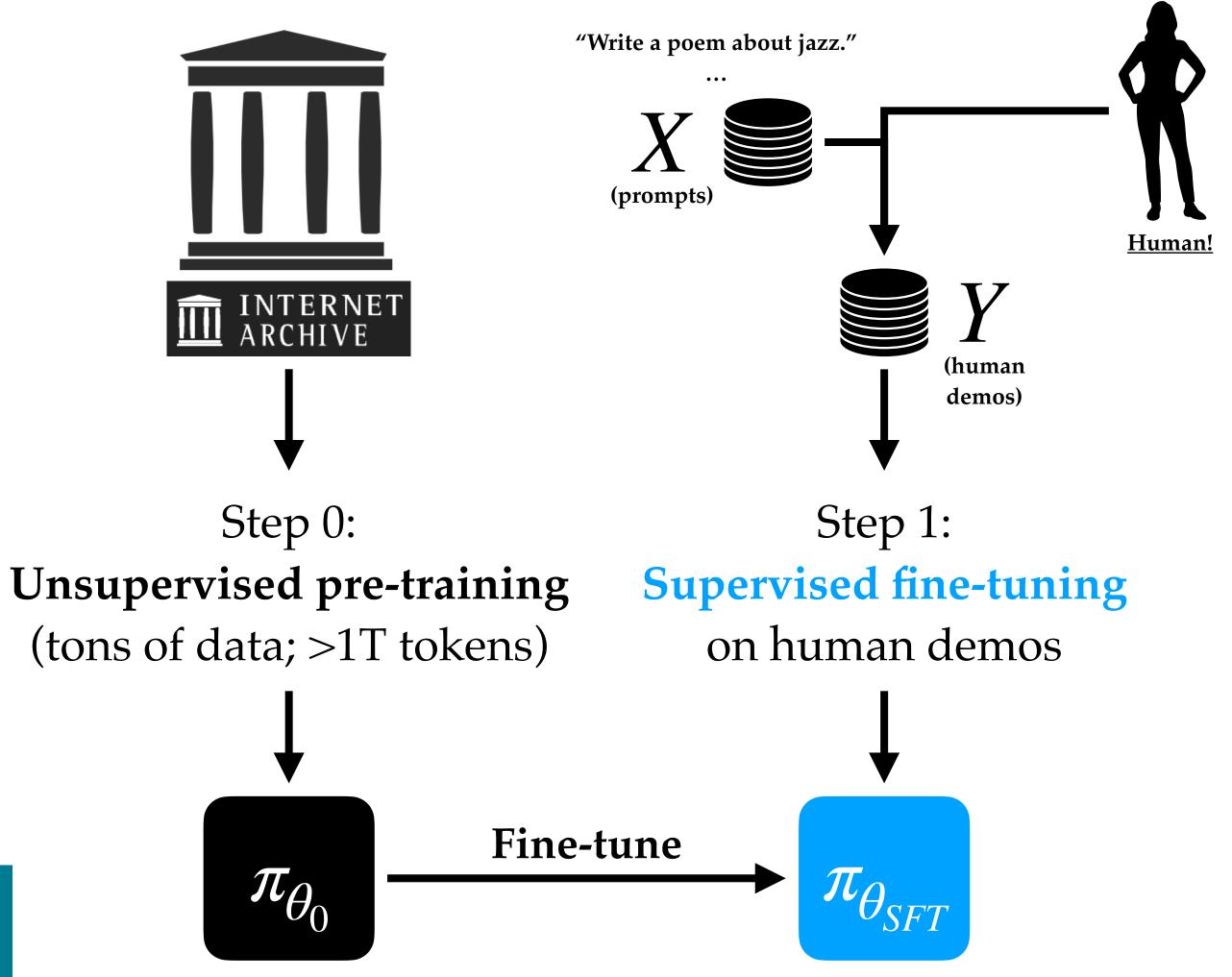
Bradley-Terry Model connects scores (rewards?) to preferences:

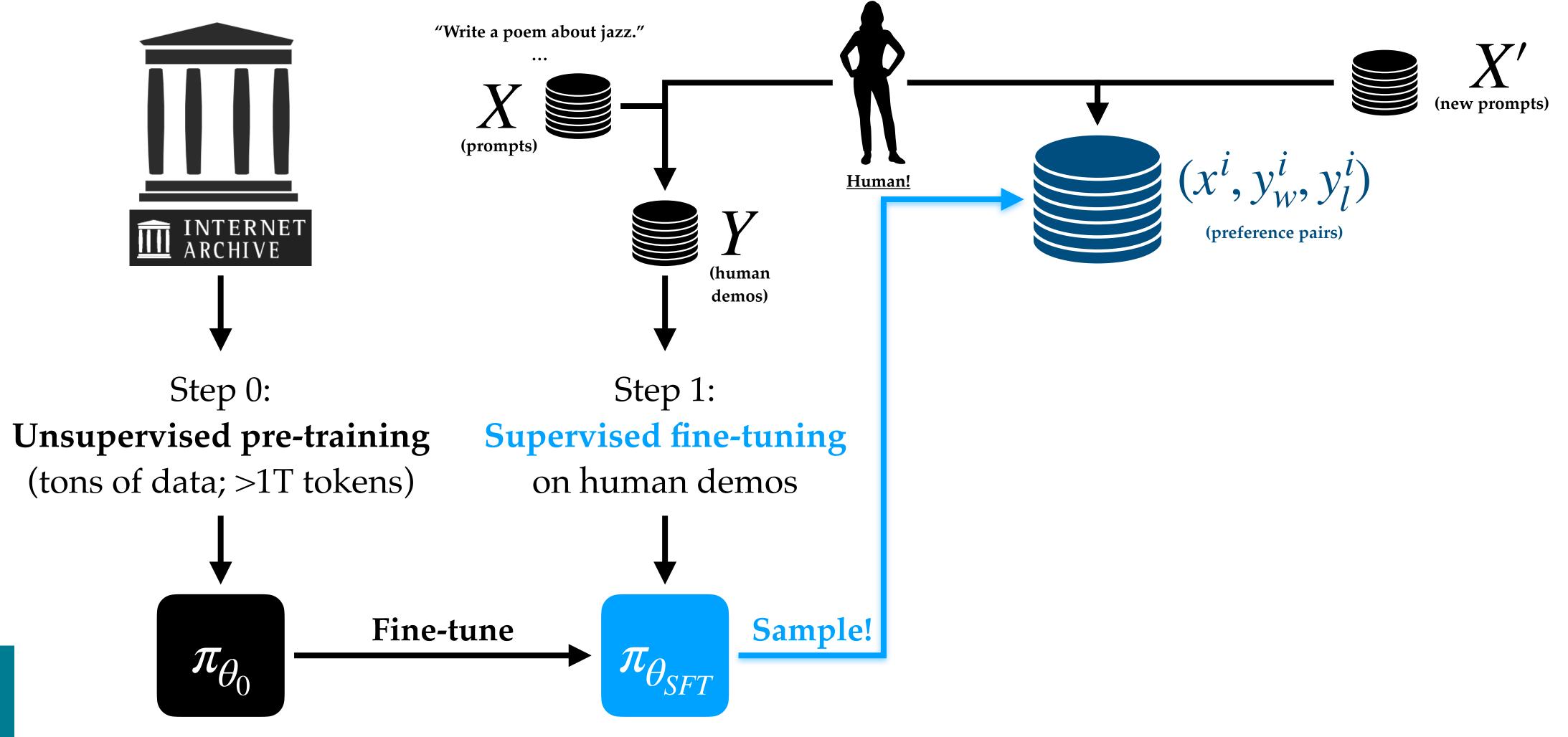
Unobserved implicit score assigned to each choice

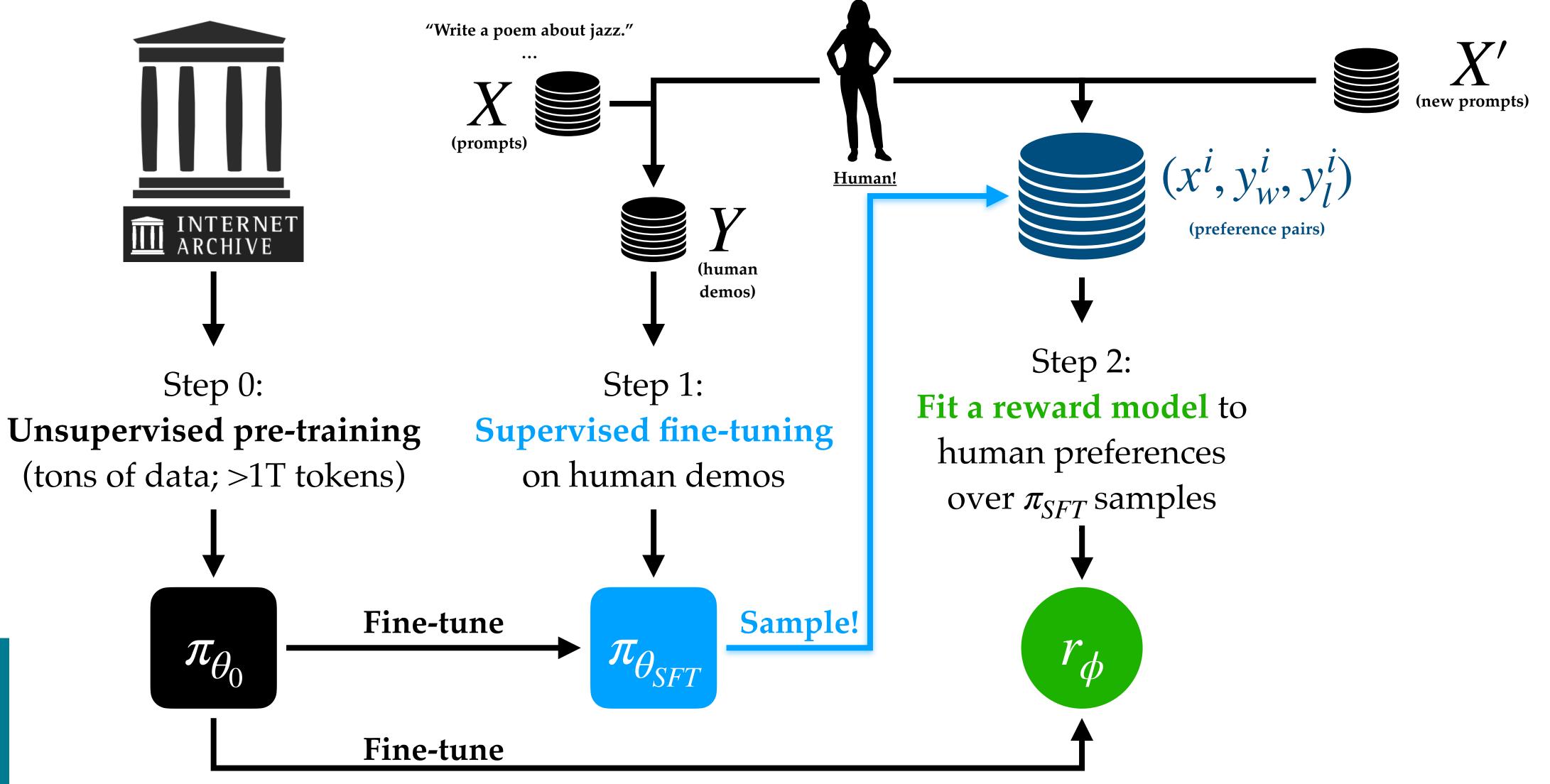
$$p(a \succ b) = \sigma(s(a) - s(b))$$

Train the reward model by minimizing negative log likelihood:

$$\mathcal{L}_R(\phi, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_\phi(x, y_w) - r_\phi(x, y_l)) \right]$$







Now we have a reward model r_{ϕ} representing goodness according to humans (allegedly)

Now we have a reward model r_{ϕ} representing goodness according to humans (allegedly)

So we learn a policy π_{θ} achieving **high reward**

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} [r_{\phi}(x, y)]$$

Sample from policy

Want high reward ...

Now we have a reward model r_{ϕ} representing goodness according to humans (allegedly)

So we learn a policy π_{θ} achieving high reward while staying close to original model π_{ref}

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(y|x) || \pi_{\text{ref}}(y|x) \right]$$

Sample from policy

Want high reward but keep KL to original model small!

Now we have a reward model r_{ϕ} representing goodness according to humans (allegedly)

So we learn a policy π_{θ} achieving high reward while staying close to original model π_{ref}

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(y|x) || \pi_{\text{ref}}(y|x) \right]$$

Sample from policy

Want high reward but keep KL to original model small!

Avoid outputs where our **reward model is inaccurate** (it was trained on π_{ref} outputs!)

Now we have a reward model r_{ϕ} representing goodness according to humans (allegedly)

So we learn a policy π_{θ} achieving high reward while staying close to original model π_{ref}

$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\text{KL}} \left[\pi_{\theta}(y|x) || \pi_{\text{ref}}(y|x) \right]$$

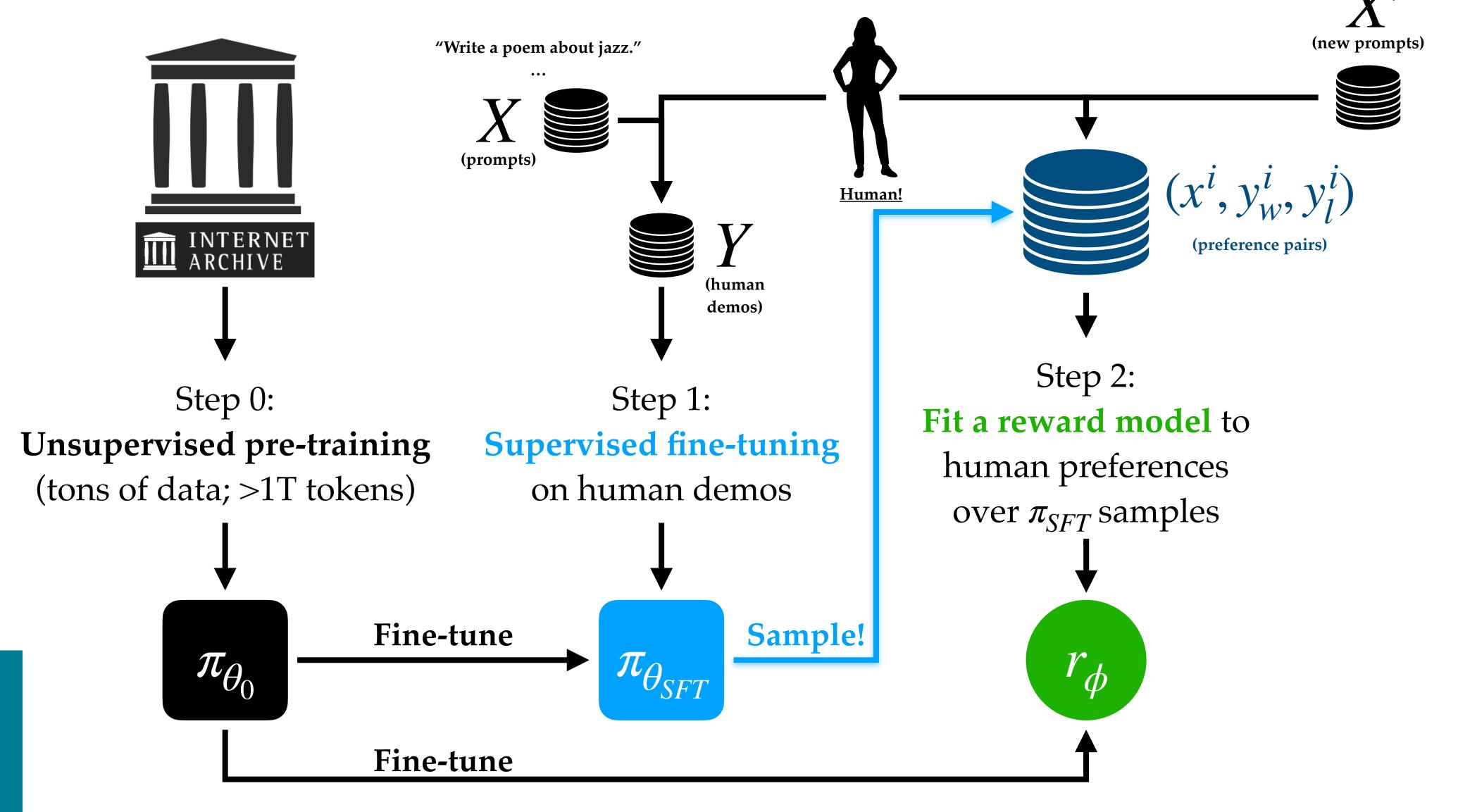
Sample from policy

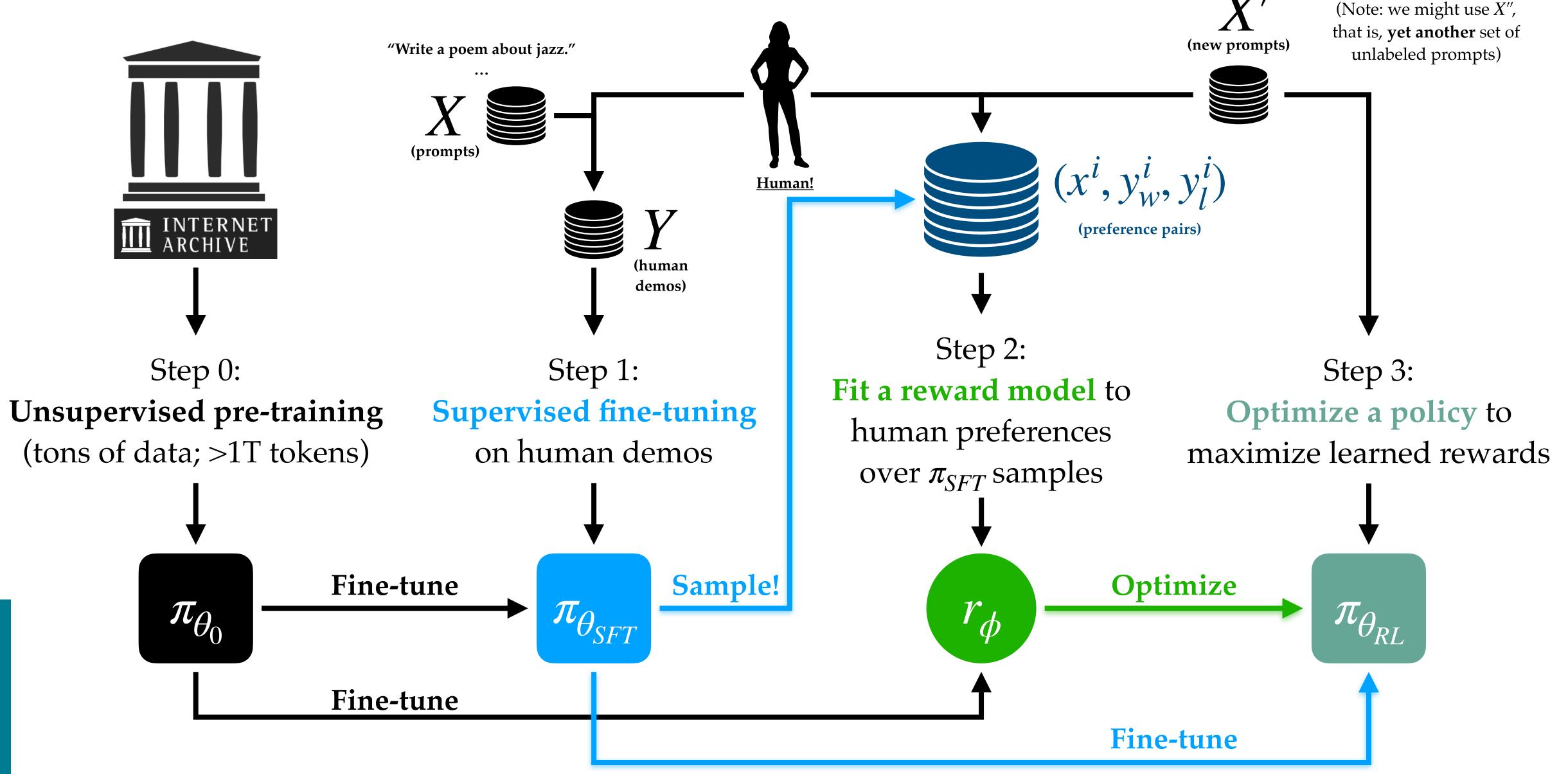
Want high reward but keep KL to original model small!

Avoid outputs where our **reward model is inaccurate** (it was trained on π_{ref} outputs!)

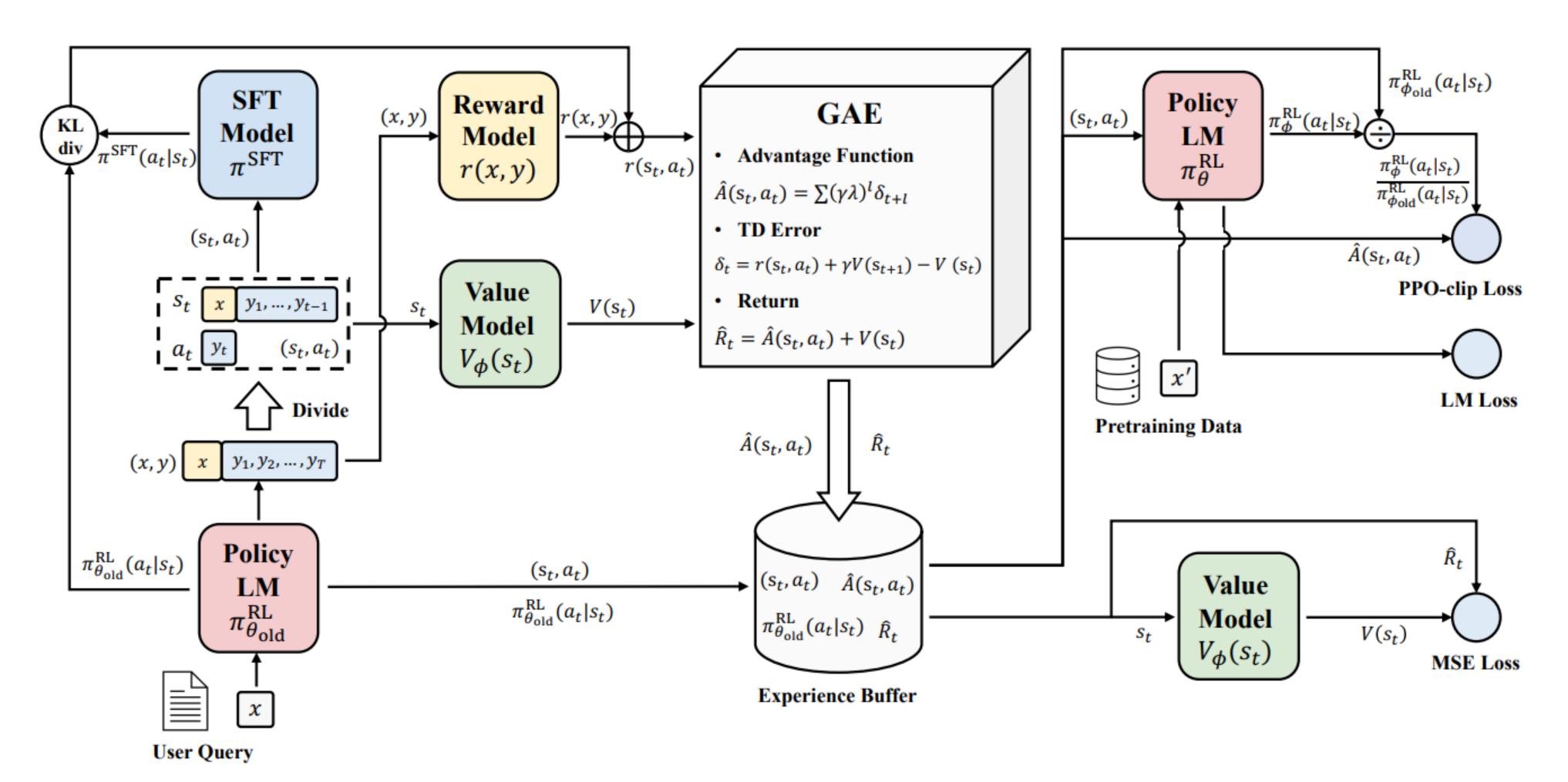
Optimize the whole thing with PPO (off-the-shelf RL algorithm)

[Proximal Policy Optimization Algorithms, Schulman, Wolski, Dhariwal, Radford, Klimov, 2017]





Traditional RLHF is complex



[Secrets of RLHF in Large Language Models Part I: PPO, Zheng, et al. 2023]

High-level punchline

If we parameterize our reward model correctly...

High-level punchline

If we parameterize our reward model correctly...

...we can extract the optimal policy for our learned reward model in closed form, with no additional training

High-level punchline

If we parameterize our reward model correctly...

...we can extract the optimal policy for our learned reward model in closed form, with no additional training

The trick: use a direct correspondence between optimal policy and reward model!

$$\pi(y|x) \Leftrightarrow r(x,y)$$

Direct Preference Optimization: Putting it together

Intractable closed-form optimal RLHF policy

$$\pi_r^*(y \mid x) = \frac{1}{Z(x)} \pi_{ref}(y \mid x) \exp\left(\frac{1}{\beta} r(x, y)\right)$$

Every **reward function** r induces an **optimal policy** π_r^*

Another view of this identity

$$r_{\pi}^*(x,y) = \beta \log \frac{\pi(y\mid x)}{\pi_{\mathrm{ref}}(y\mid x)} + \beta \log Z(x)$$
 But we can't compute this (sums over all sequences)!

Every **policy** π is the optimal policy for some **induced reward function** r_π^*

Key idea of DPO: train the policy π so that r_{π} fits the human preference data!

Direct Preference Optimization: Putting it together

Fortunately, the reward modeling loss only depends on differences in rewards:

$$\mathcal{L}_R(r, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r(x, y_w) - r(x, y_l)) \right]$$

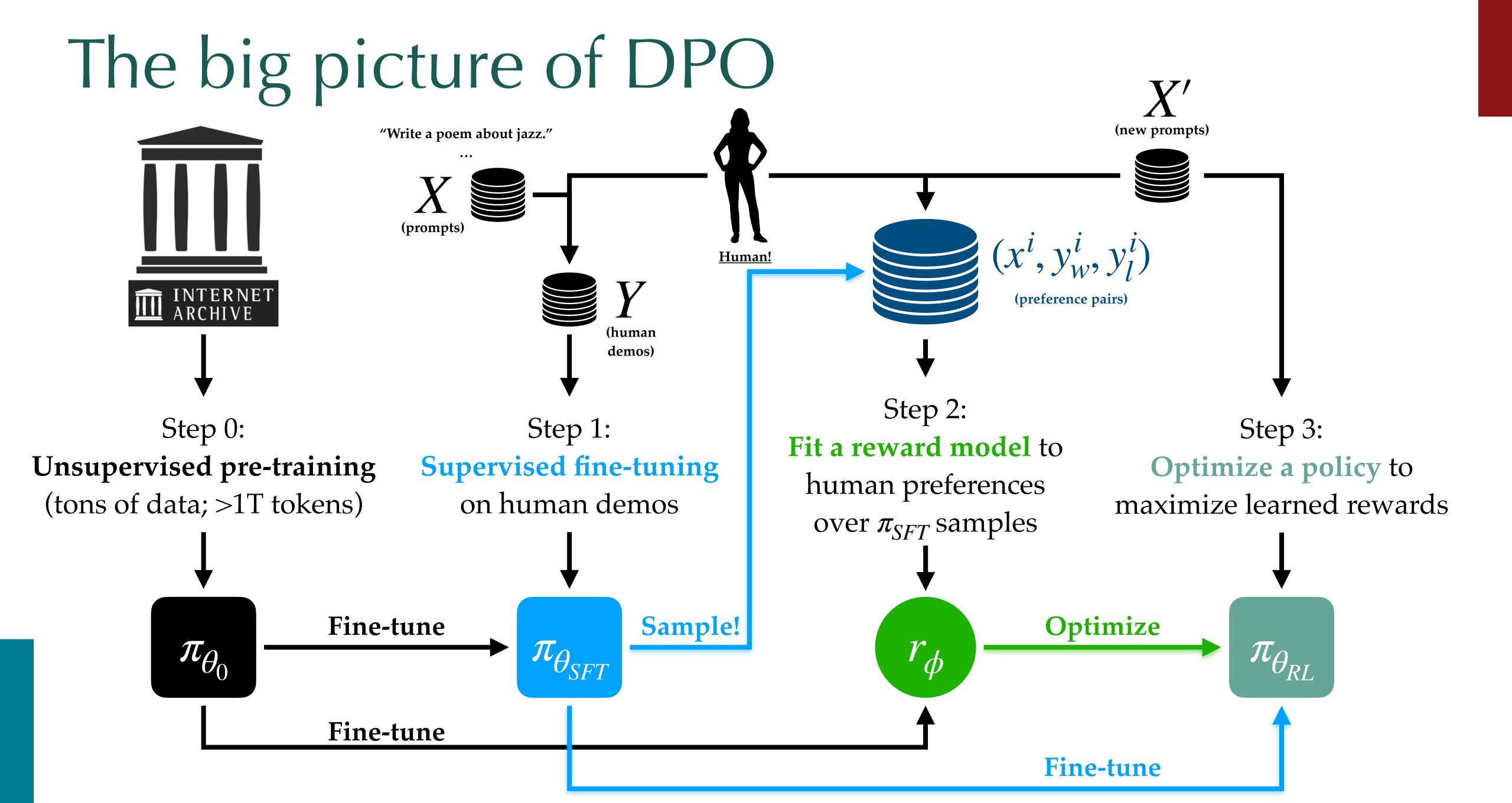
For two different responses, the induced reward difference is:

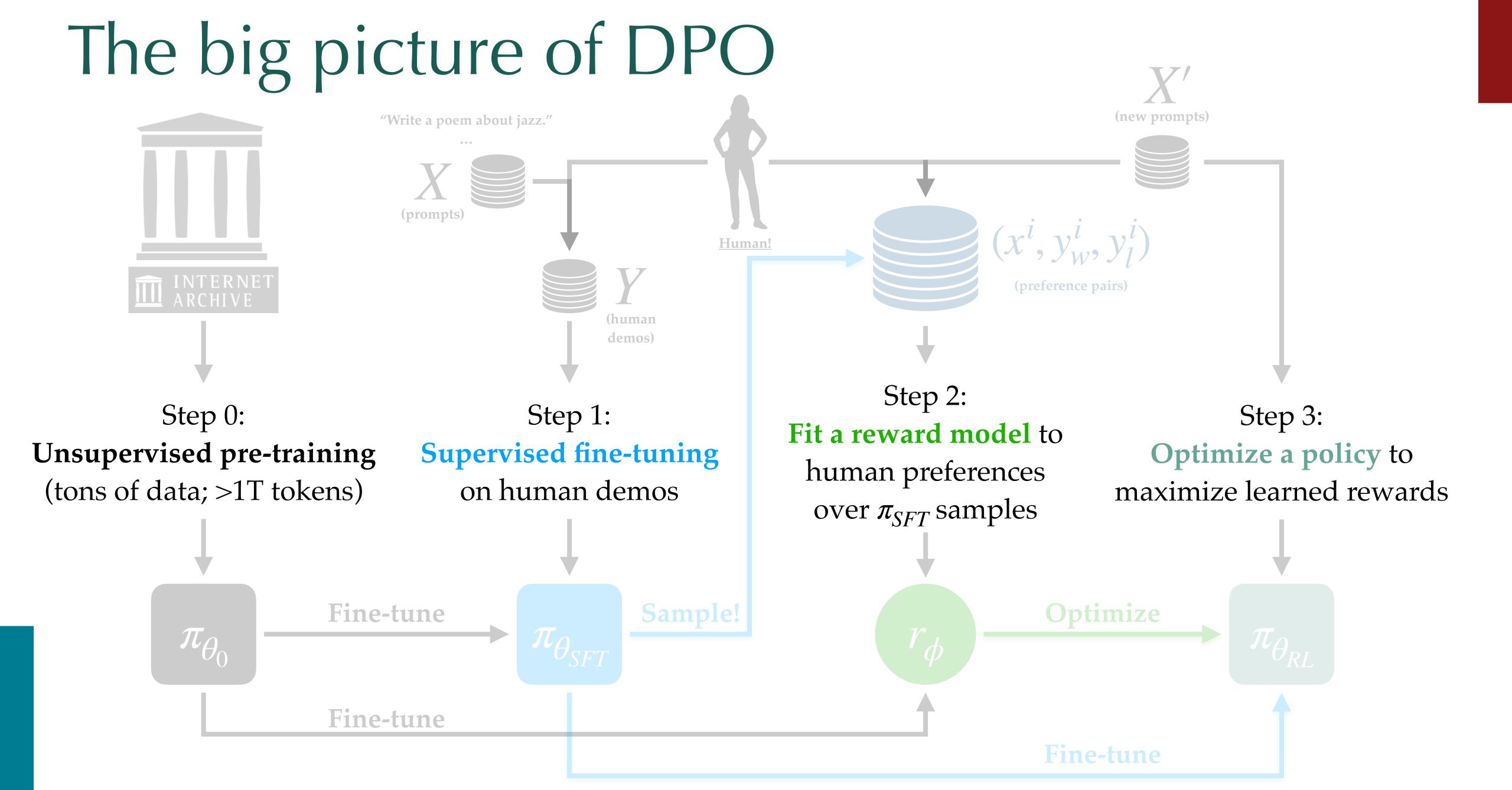
$$r_{\pi_{\theta}}(x, y_w) - r_{\pi_{\theta}}(x, y_l) = \underbrace{\beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)}}_{\text{induced reward for } y_w} - \underbrace{\beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)}}_{\text{induced reward for } y_l}$$

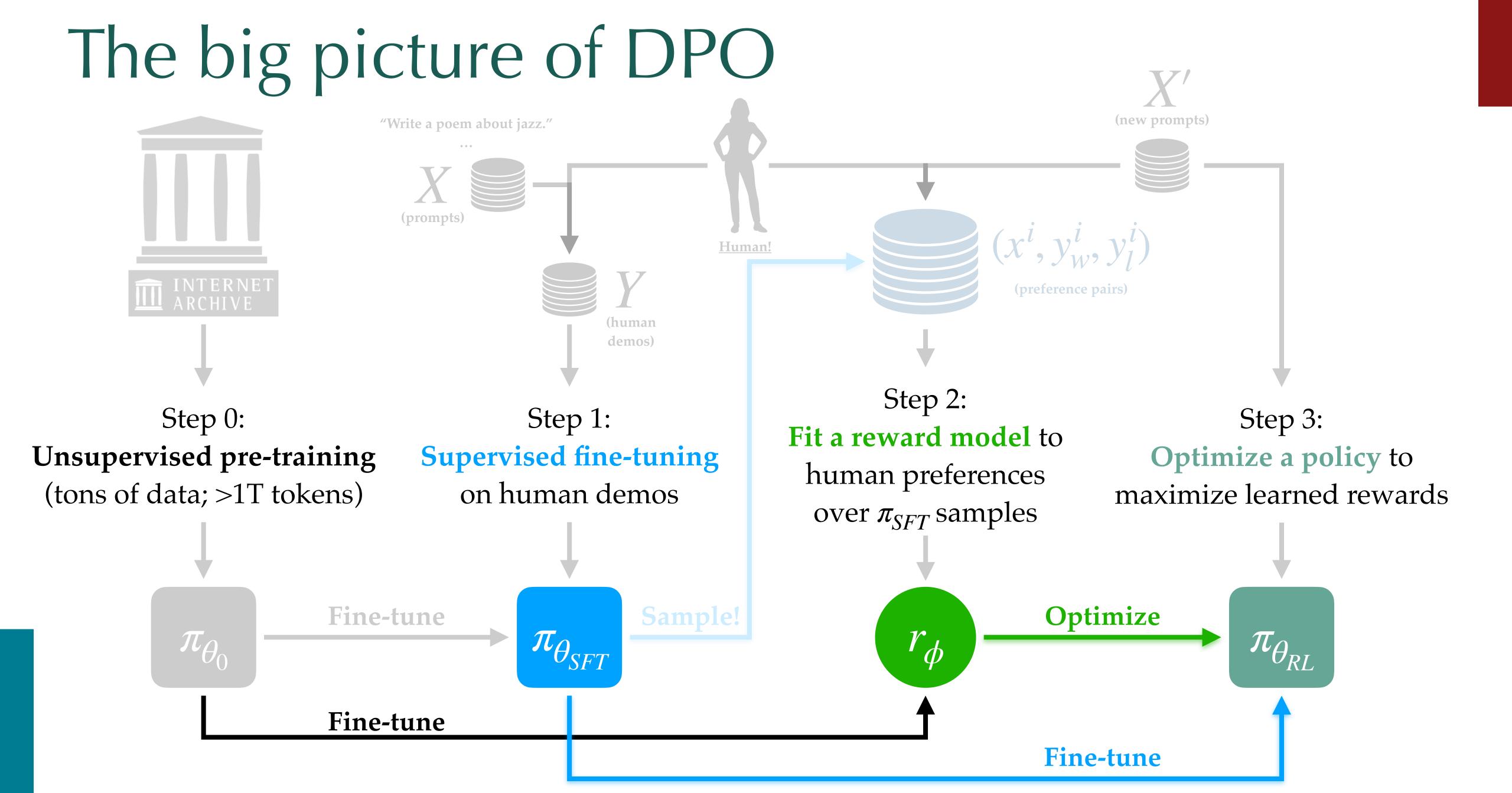
The intractable partition function cancels out when we take the difference (i.e., it only depends on the prompt)!

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_{\pi_{\theta}}(x, y_w) - r_{\pi_{\theta}}(x, y_l)) \right]$$

DPO: a simple classification loss for optimizing the RLHF objective!







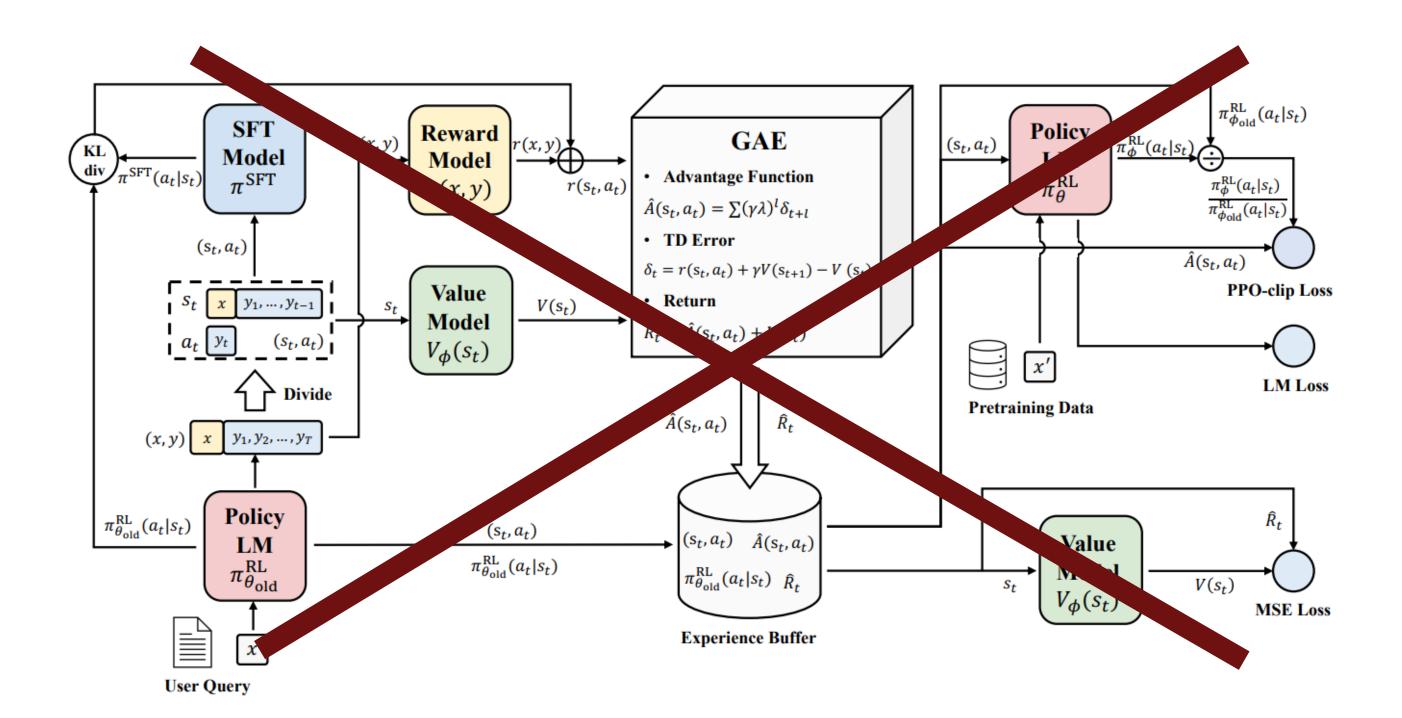
The big picture of DPO (new prompts) "Write a poem about jazz." (prompts) (x^i, y_w^i, y_l^i) Human! INTERNET (preference pairs) (human demos) Step 2: Step 0: Step 1: Step 3 Fit a reward model to Unsupervised pre-training Supervised fine-tuning Optimiz policy to human preferences on human demos (tons of data; >1T tokens) maximir e learned rewards over π_{SFT} samples mize Fine-tune Sample! $\pi_{\theta_{SFT}}$ θ_{RL} Fine-tune Fine-tune

The big picture of DPO (new prompts) "Write a poem about jazz." (prompts) Human! INTERNET (preference pairs) (human demos) Step 2: Step 0: Step 1: Fit a reward model to Unsupervised pre-training Supervised fine-tuning human preferences on human demos (tons of data; >1T tokens) over π_{SFT} samples **Trivial** transform Sample! Fine-tune $\pi_{\theta_{SFT}}$ $\pi_{\theta_{RL}}$ π_{θ} Fine-tune Instead of r_{ϕ} , use induced reward $r_{\pi_{\theta}}$

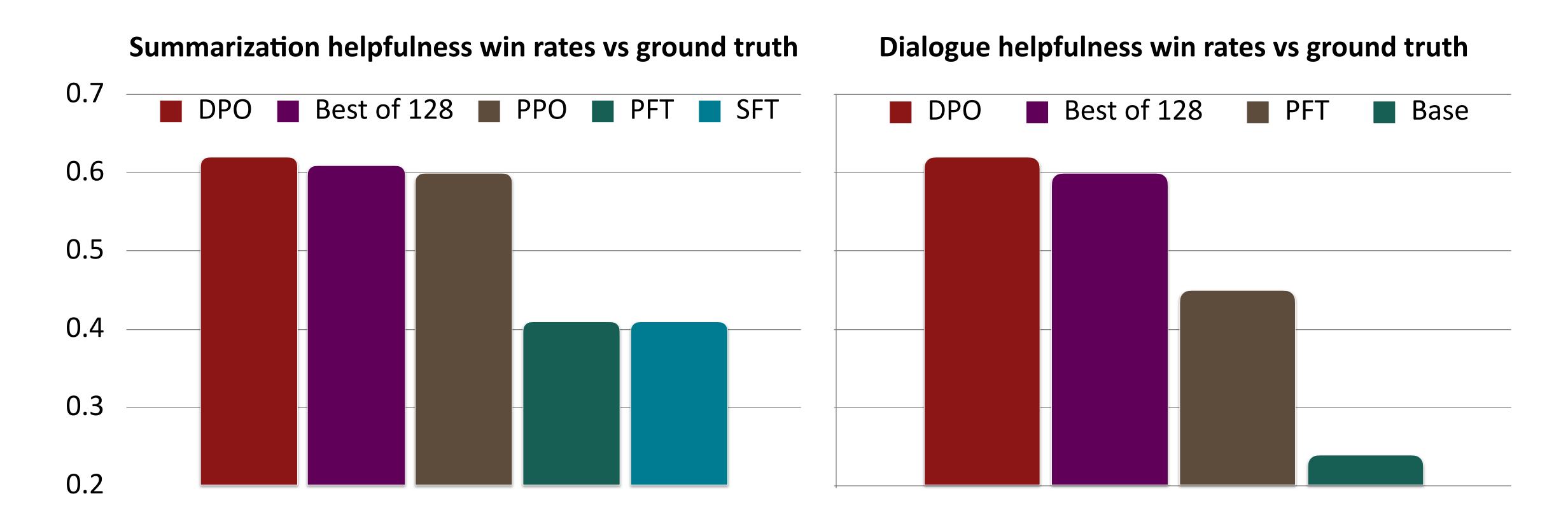
The big picture of DPO

In other words, skip the complexity of:

- Fitting value function
- Sampling from policy during training
- Storing replay buffer of trajectories
- _

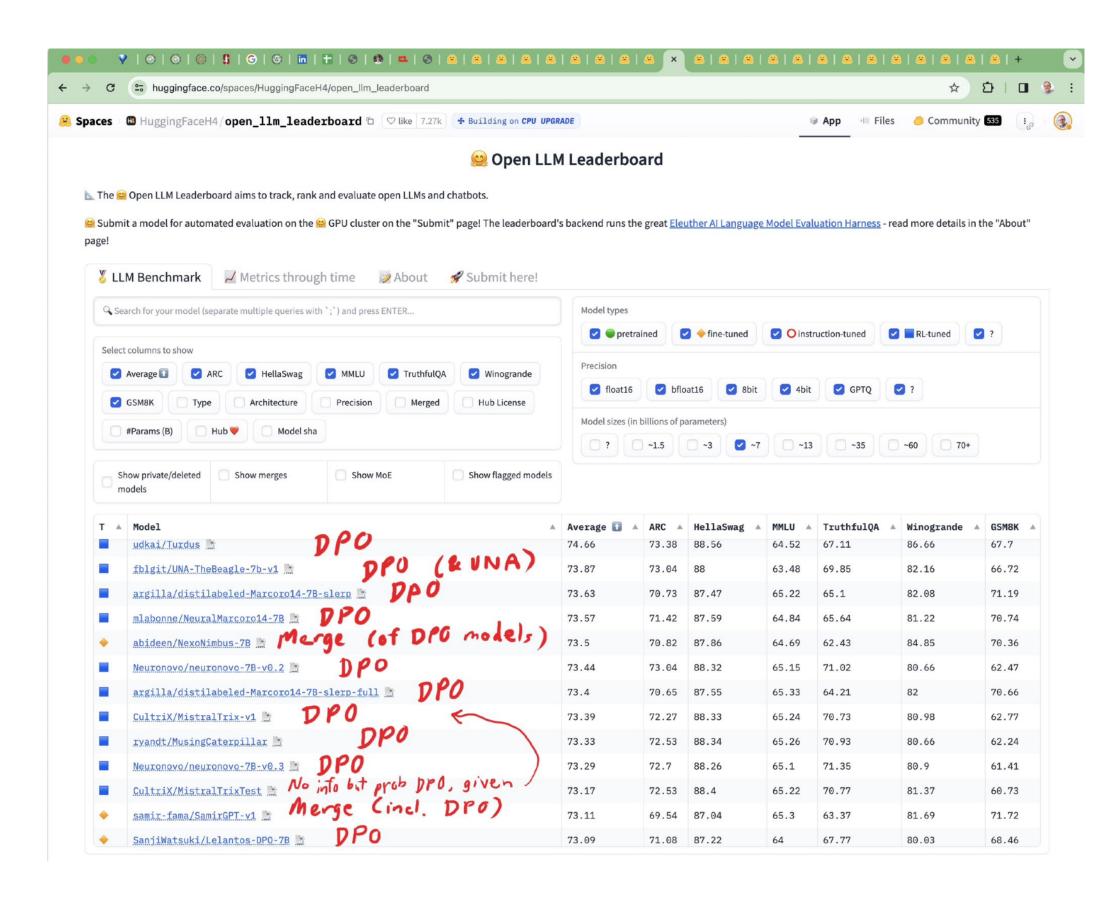


Results: Overview



DPO performs similarly to other RL-based baselines, while being substantially simpler, computationally cheaper, and stabler

Strong models trained with DPO



Almost all the top models on the OpenLLM Leaderboard use DPO!

	GPT - 3.5	Mistral Small	Mistral Medium
MT Bench (for Instruct models)	8.32	8.30	8.61

https://mistral.ai/news/mixtral-of-experts/

Zephyr: Direct Distillation of LLM Alignment. Tunstall et, al., 2023.

Open instruction & RLHF models

Ai2

Camels in a Changing Climate: Enhancing LM Adaptation with Tulu 2. Ivison, et al., 2023

Part 2: Contrastive Preference Learning

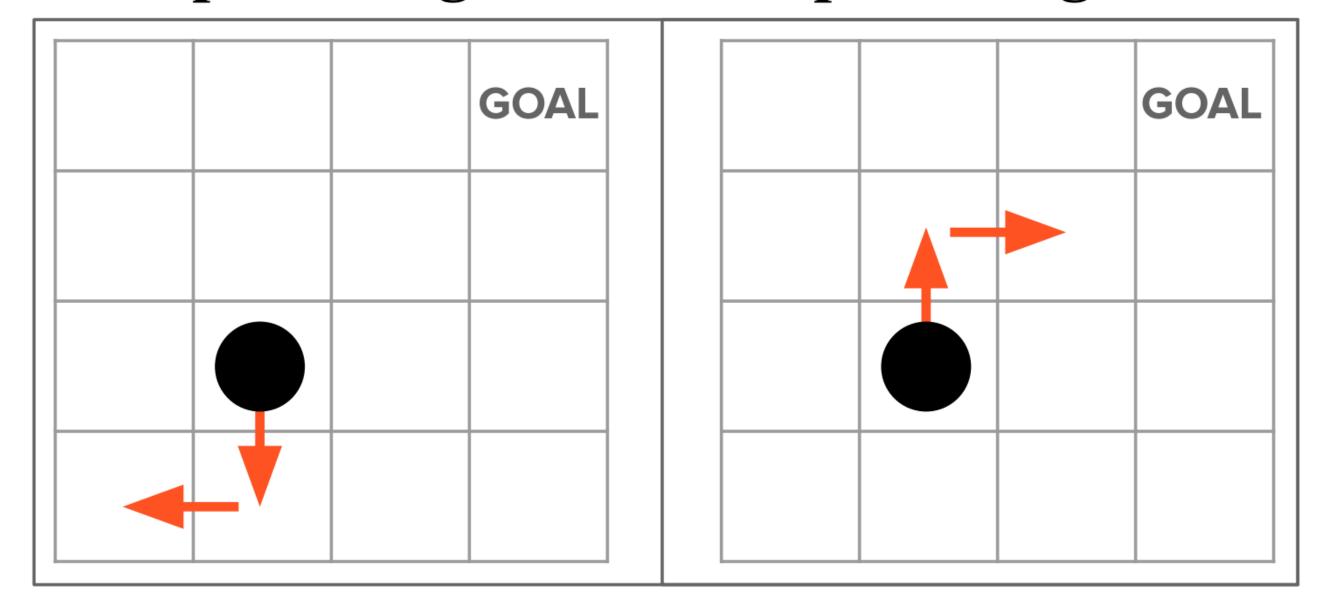
Can the DPO trick work for sequential settings?

Models of Human Preference for Learning Reward Functions

W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, Alessandro Allievi

Suboptimal segment

Optimal segment



$$P_r(\sigma^+ > \sigma^-) = \frac{exp \sum_{t} r(s^+, a_t^-)}{exp \sum_{t} r(s^+, a_t^-)}$$

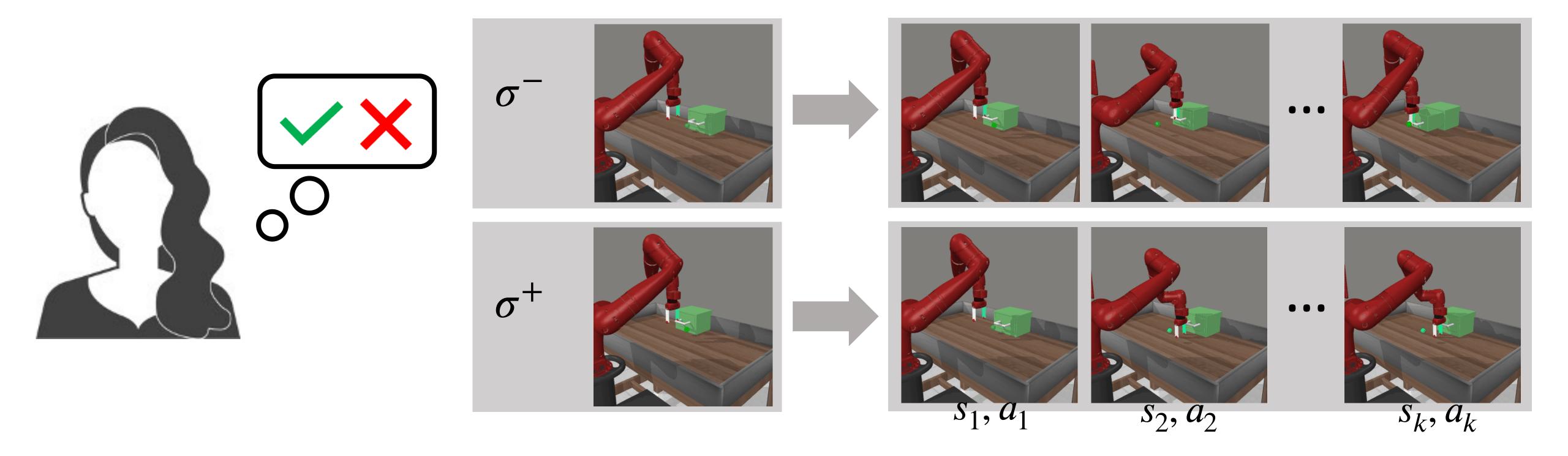
Models of Human Preference for Learning Reward Functions

W. Bradley Knox, Stephane Hatgis-Kessell, Serena Booth, Scott Niekum, Peter Stone, Alessandro Allievi

Regret-based Model of Preferences:

$$P_{A^*}(\sigma^+ > \sigma^-) = \frac{\exp \sum_t A^*(s_t^+, a_t^+)}{\exp \sum_t A^*(s_t^+, a_t^+) + \exp \sum_t A^*(s_t^-, a_t^-)}$$

...but no efficient algorithm to learn from it!



$$P_{A^*}(\sigma^+ > \sigma^-) = \frac{\exp \sum_t A^*(s_t^+, a_t^+)}{\exp \sum_t A^*(s_t^+, a_t^+) + \exp \sum_t A^*(s_t^-, a_t^-)}$$

A Naïve Approach

$$\min_{A} - \mathbb{E}_{D} \left[\log P_{A} \left(\sigma^{+} > \sigma^{-} \right) \right] \qquad \qquad \min_{\pi} - \mathbb{E}_{D} \left[e^{A(s,a)} \log \pi(a \mid s) \right]$$

1. Advantage Learning

2. Policy Extraction

Problem: (Ziebart 2010)

$$\pi^*(a \mid s) = e^{A^*(s,a)} \Longrightarrow \int e^{A^*(s,a)} da = 1$$

To be optimal, our learned advantage must be normalized.

Solution: Just learn π

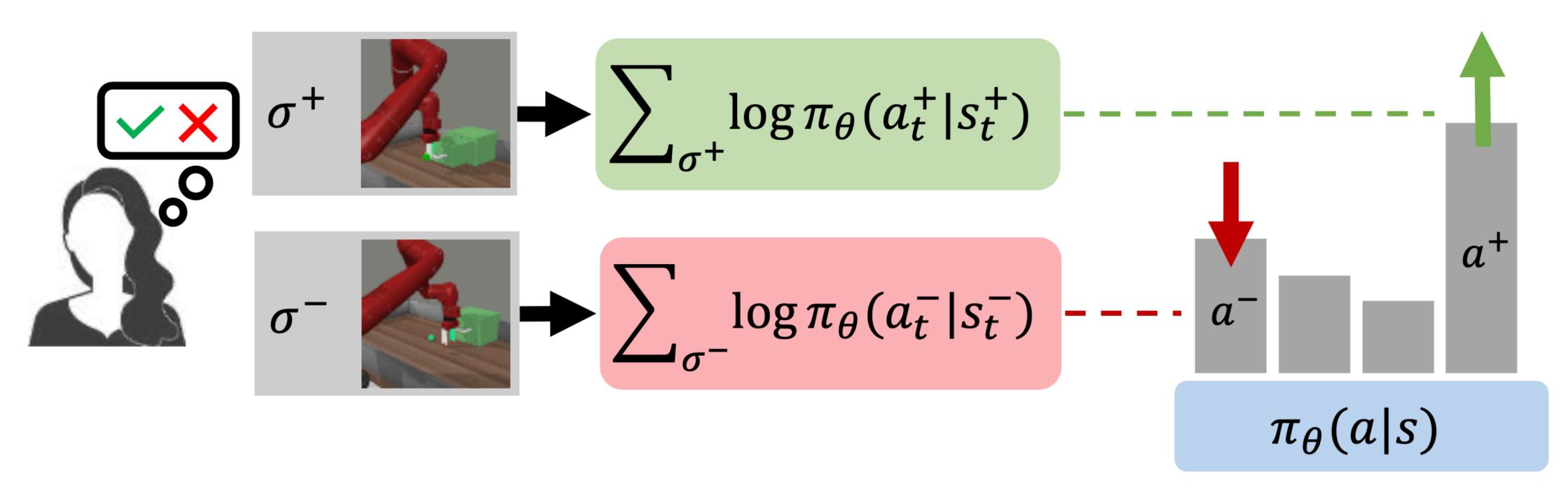
$$\pi^*(a \mid s) = e^{A^*(s,a)} \Longrightarrow \log \pi^*(a \mid s) = A^*(s,a)$$

$$P_{\pi^*}(\sigma^+ > \sigma^-) = \frac{\exp \sum_t \log \pi^*(a_t^+ | s_t^+)}{\exp \sum_t \log \pi^*(a_t^+ | s_t^+) + \exp \sum_t \log \pi^*(a_t^- | s_t^-)}$$

Contrastive Preference Learning

$$\min_{\pi} - \mathbb{E}_{D} \left[\log \frac{\exp \sum_{t} \log \pi(a_{t}^{+} | s_{t}^{+})}{\exp \sum_{t} \log \pi(a_{t}^{+} | s_{t}^{+}) + \exp \sum_{t} \log \pi(a_{t}^{-} | s_{t}^{-})} \right]$$

Contrastive Preference Learning



Regret-based Preferences

$$P_{A^*}[\sigma^+ > \sigma^-] = \frac{e^{\sum_{\sigma^+} A^*(s_t^+, a_t^+)}}{e^{\sum_{\sigma^+} A^*(s_t^+, a_t^+)} + e^{\sum_{\sigma^-} A^*(s_t^-, a_t^-)}}$$

Contrastive Learning

$$L_{CPL} = -\mathbb{E}\left[\log P_{\log \pi_{\theta}}[\sigma^{+} > \sigma^{-}]\right]$$

Theoretical Properties

Prop 1. CPL always learns the optimal policy for some reward function.

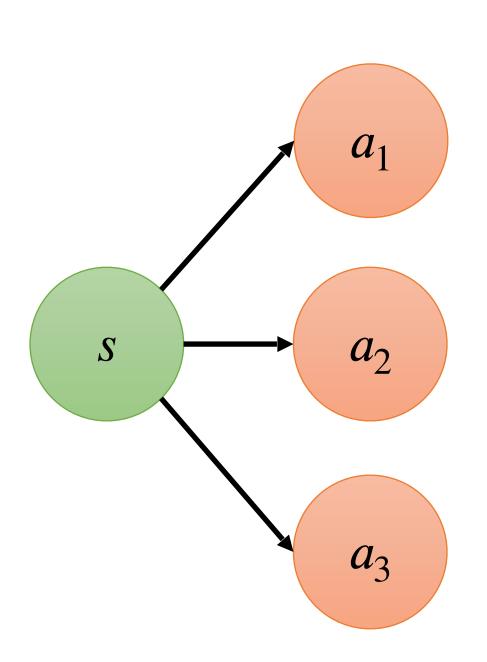
Idea: show that using the normalized advantage function as the reward function results in the same policy.

Theorem 1. Given unbounded regret-based comparison data, CPL converges to the optimal policy.

Idea: Given identifiability of regret-based preferences, CPL loss can equal zero. This implies the advantage functions are the same.

Regularization

Problem: CPL can place high-likelihood on OOD actions.



Let
$$D = \{(a_1 > a_2), (a_2 > a_1)\}$$

Then, minimum of CPL loss is underspecified:

logistic
$$\left(\log \pi(a_1 \mid s) - \log \pi(a_2 \mid s)\right) = \frac{1}{2}$$

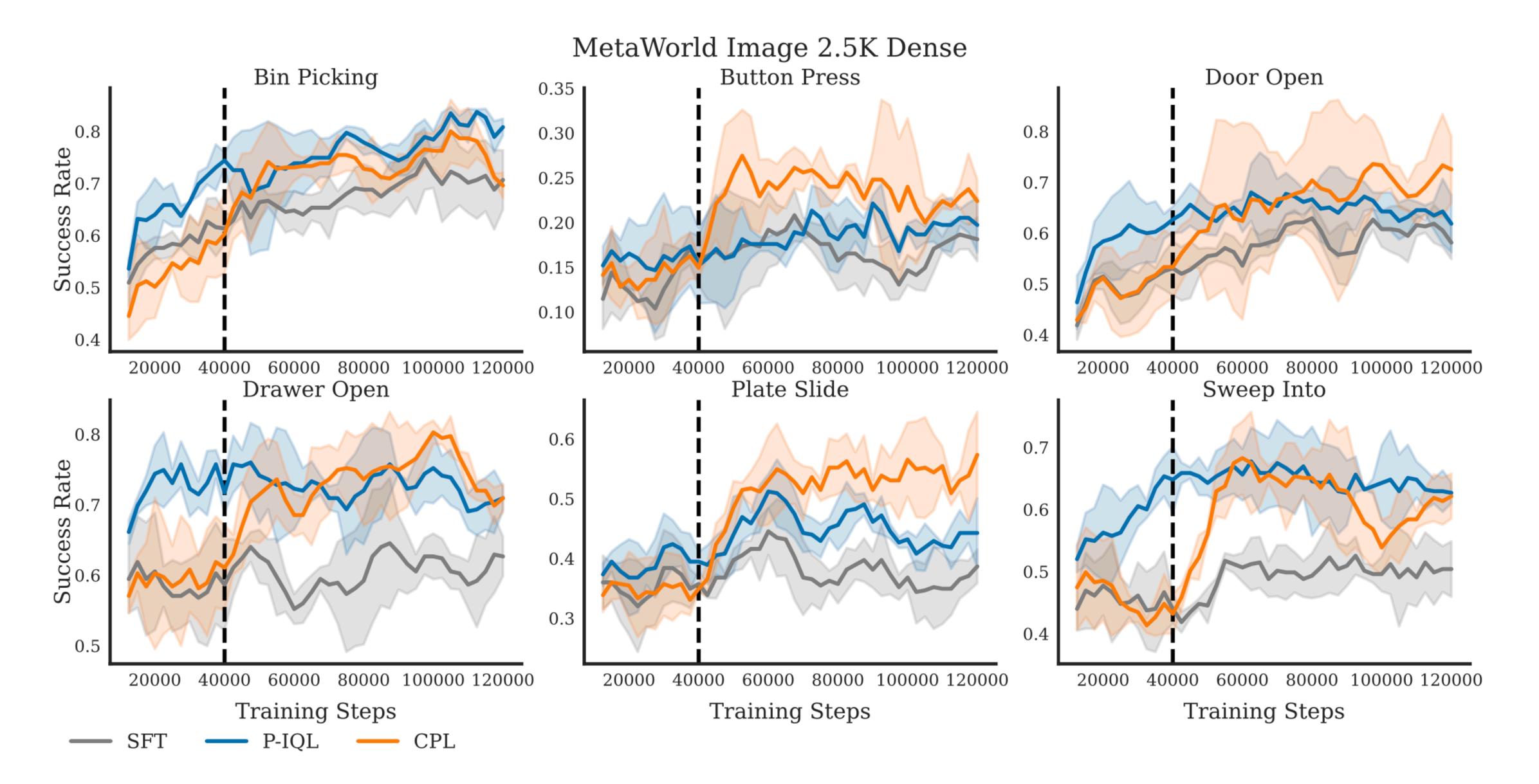
[0.5, 0.5, 0] and [0.01, 0.01, 0.98] both minimize the CPL Loss. Our null space is too big!

Regularized Contrastive Preference Learning

$$\min_{\pi} - \mathbb{E}_{D} \left[\log \frac{\exp \sum_{t} \log \pi(a_{t}^{+} | s_{t}^{+})}{\exp \sum_{t} \log \pi(a_{t}^{+} | s_{t}^{+}) + \exp \lambda \sum_{t} \log \pi(a_{t}^{-} | s_{t}^{-})} \right]$$

Prop 2. $0 < \lambda < 1$ makes the regularized CPL loss lower when a higher weight is put on in-distribution actions.

Does CPL work as well as traditional RLHF?



CPL vs. DPO

DPO is a special case of CPL, where we learn a contextual bandit policy in the KL-constrained setting