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Learning reward functions from preferences
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Preferences over segment pairs
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Preferences over segment pairs

GOAL GOAL

or

Which shows better behavior?

Preferences dataset
Preference elicitation  

(or generation)
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Given a preference model	 	 	      ,  
 
optimize r to maximize the likelihood of the preferences dataset.

Learning a reward function from preferences

}
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Why preferences?

● Established technique in reward learning


● Intuitive for humans


● Judgment may be easier than control


● Connects to expected utility theory


● In ideal settings, the reward function underlying the preferences can be 

recovered
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The missing piece: the model of preference
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The missing piece: the model of preference
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The missing piece: the model of preference

Current dominant model:  
Partial return

,
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The missing piece: the model of preference

Partial return:

Assume -1 reward per 
step.


Partial return is indifferent!
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The missing piece: the model of preference

Partial return:

Partial return prefers the 
left segment!
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The missing piece: the model of preference

Proposed preference model: Regret

when all 
transitions are 
deterministic
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The missing piece: the model of preference

Regret:

Assume -1 reward per 
step.


Regret prefers σ2.
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The missing piece: the model of preference

Regret:

Regret prefers σ2.
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Reward Identifiability



Reward identifiability

definition:

Ground  
truth….

Equivalent 
(same set of optimal policies)

Infinitely exhaustive 
preferences datasetLearned ∃ an algorithm that 

guarantees …

Given preferences generated by a preference model and a reward function,  
where the preferences infinitely cover every segment pair, 
does the preference dataset contain sufficient information to recover an 
equivalent reward function?
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Reward identifiability

Reward is identifiable with regret-based 
preferences for any MDP.
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Reward identifiability

With partial 
return, reward is 
not generally 
identifiable 
without preference 
noise that reveals 
rewards' relative 
proportions.
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If                 ,            is optimal.If                  ,           is optimal.

Reward identifiability

Yet both create the same (noiseless) preferences!!

11 9
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If                 ,            is optimal.If                  ,           is optimal.

Reward identifiability

Yet both create the same (noiseless) preferences!!
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Therefore, reward is not generally 
identifiable with noiseless preferences from 

partial return.
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How to learn under the regret-based model?



The regret preference model



Efficiently estimating value functions

Regret preference model

We assume linear reward functions and use successor features 
to quickly estimate Q* and V* for new reward parameters.
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Learning a reward function with 
synthetic preferences



The delivery domain

w1

w2
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w4

w5

w6

ground-truth reward

terminates
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100 
randomly 
generated 
MDPs
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When each model is perfect, because it creates its own preference dataset
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A human preference dataset



The delivery task
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ground-truth reward

terminates
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Preference elicitation
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Human preferences visualized

Recall
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Explaining human preferences with different preference models

Mean cross-entropy test loss over 10-fold cross 
validation (n=1812) from predicting human 
preferences. Lower is better.
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Performance with random partitions of human preferences dataset
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Benefits of the regret preference model (over the partial return model)

1. Humans intuitively appear to consider state value. The regret preference 
model also considers state value (in expectation).


2. Always prefers optimal segments over suboptimal segments, making it 
reward identifiable with noiseless preferences or stochastic preferences.


3. More sample efficient 
	 • when learning from its own preferences. 
	 • when learning from human preferences.


4. When |σ| = 1, the discount factor is considered, which is critical because the 
discount factor and the reward function interact to determine the set of 
optimal policies.
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Choose set sensitivity

• Human shown (A,B) — prefers A to B


• Human shown (A,B,C) — prefers B to A


• Why?



Decoy effect

Laptop A Laptop B

Cost: $100

Storage: 1 TB

Cost: $200

Storage: 2 TB



Decoy effect

Laptop A Laptop B Laptop C

Cost: $100

Storage: 1 TB

Cost: $200

Storage: 2 TB

Cost: $400

Storage: 3 TB



Decoy effect

Option A Option B

Helpfulness: 5

Toxicity: 1

Helpfulness: 8

Toxicity: 4



Decoy effect

Option A Option B Option C

Helpfulness: 5

Toxicity: 1

Helpfulness: 8

Toxicity: 4

Helpfulness: 9

Toxicity: 8



What do preferences really mean?
…and how should we model them?


